Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pure metal
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the paper we will present the method of finding the heat transfer coefficient in the inverse problem of pure metal solidification. In the considered model the shrinkage of metal and the air-gap between material and mold will be taken into account. The method is based on the algorithm for solution of the direct problem and on the Artificial Bee Colony algorithm. In the algorithm for solving the direct problem we use the finite element method supplemented by the procedure allowing to define the position of the moving interface and the change of material size associated with the shrinkage. To solve the inverse problem, a functional defining the error of approximate solution must be minimized. To minimize this functional we use the Artificial Bee Colony algorithm. Then we present the computational example illustrating precision and stability of the presented method.
PL
W pracy zaprezentowana zostanie metoda wyznaczania współczynnika wnikania ciepła w zagadnieniu odwrotnym krzepnięciem czystego metalu. W rozważanym modelu uwzględniony będzie skurcz metalu oraz szczelina powietrzna pomiędzy odlewem i wlewkiem. Prezentowana metoda wykorzystuje algorytm rozwiązania zagadnienia bezpośredniego oraz algorytm pszczeli. W algorytmie rozwiązania zagadnienia bezpośredniego wykorzystano metodę elementów skończonych uzupełnioną o procedurę pozwalającą określić położenie granicy rozdziału faz oraz zmianę wymiarów wlewka spowodowaną skurczem metalu. W rozwiązaniu zagadnienia odwrotnego należy zminimalizować funkcjonał określający błąd rozwiązania przybliżonego. W tym celu wykorzystano algorytm pszczeli. Przedstawiono także przykład obliczeniowy ilustrujący dokładność i stabilność prezentowanej metody.
EN
The paper is focused on the modeling of the directional solidification process of pure metal. During the process the solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D. The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys, etc. The influence of natural convection on the temperature distribution and the solid-liquid interface motion during solidification of pure copper is studied. The mathematical model of the process is based on the differential equations of heat transfer with convection, Navier-Stokes equation and the motion of the interface. This system of equations is supplemented by the appropriate initial and boundary conditions. In addition the continuity conditions at the solidification interface must be properly formulated. The solution involves the determination of the temporary temperature and velocity fields and the position of the interface. Typically, it is impossible to obtain the exact solution of such problem. The numerical model of solidification of pure copper in a closed cavity is presented, the influence of the natural convection on the phase change is investigated. Mathematical formulation of the problem is based on the Stefan problem with moving internal boundaries. The equations are spatially discretized with the use of fixed grid by means of the Finite Element Method (FEM). Front advancing technique uses the Level Set Method (LSM). Chorin’s projection method is used to solve Navier-Stokes equation. Such approach makes possible to uncouple velocities and pressure. The Petrov-Galerkin formulation is employed to stabilize numerical solutions of the equations. The results of numerical simulations in the 2D region are discussed and compared to the results obtained from the simulation where movement of the liquid phase was neglected.
PL
Praca porusza problematykę modelowania kierunkowego krzepnięcia czystego metalu. Podczas tego procesu obserwuje się formowanie ostrego frontu krzepnięcia w postaci powierzchni separującej ciecz i ciało stałe w przypadku trójwymiarowym lub krzywej w przypadku płaskim. Położenie oraz kształt interfejsu krzepnięcia zmieniają się w czasie a wartości prędkości lokalnych zależą od różnicy intensywności strumieni ciepła po stronie ciała stałego i cieczy. Krzepnięcie z ostrym frontem należy do grupy procesów z przemianami fazowymi, które warunkowane są zmianami temperatury, ciśnienia, itp. Przejście fazowe z jednego stanu w drugi ma z matematycznego punktu widzenia charakter nieciągły. Procesy tego typu można zidentyfikować podczas zamarzania wody, parowania, topnienia i krzepnięcia metali i stopów, itp. W pracy zbadano wpływ zjawiska konwekcji swobodnej na chwilowy rozkład temperatury oraz ruch granicy narastania fazy stałej podczas krzepnięcia czystej miedzi w obszarze płaskim. Model matematyczny sformułowano na bazie równań różniczkowych transportu ciepła z konwekcją, Naviera-Stokesa i ruchu frontu krzepnięcia. Układ równań uzupełniono odpowiednimi warunkami początkowymi i brzegowymi oraz warunkami ciągłości na froncie. Rozwiązanie obejmuje chwilowe rozkłady temperatury, prędkości oraz położenie granicy międzyfazowej. Sformułowanie matematyczne zagadnienia bazuje na modelu z ruchomymi granicami wewnętrznymi, czyli tzw. modelu Stefana. Równania zostały zdyskretyzowane przestrzennie z wykorzystaniem metody elementów skończonych. W modelu numerycznym wykorzystano siatkę niezmienną w czasie. Do propagacji frontu użyto metody poziomic. Do wyznaczenia prędkości w cieczy wykorzystano metodę rzutowania, która poprzez eliminację ciśnienia z równania pędu pozwala na rozprzężenie prędkości i ciśnień. Równania rozwiązano z wykorzystaniem sformułowania Petrova-Galerkina. Omówiono wyniki analizy numerycznej oraz porównano je z wynikami otrzymanymi z symulacji, w której pominięto ruch cieczy.
EN
The paper presents a method of mathematical and numerical modelling of directional solidification process of pure metal in the two-dimensional region. In this case, the thermal conditions associated with the process favours the occurrence of sharp solidification front. The mathematical description of the process is based on the Stefan formulation with appropriate continuity conditions on the solid-liquid interface. The numerical model is based on the finite element method (FEM). The calculations were made on a fixed mesh with diffused solidification front to avoid the difficulties associated with the discontinuity. Temporary position of the interface was calculated with the use of the level set method (LSM). Effect of the quality of the spatial discretization on the accuracy of numerical solution was investigated. Obtained results of the temporary front position were compared with the analytical solution. The correlation between the quality of the spatial discretization and the accuracy of the results was observed. Methods used in the work had significant impact on the computation time and helped avoid the explicit consideration of discontinuity of heat flux on the front.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.