Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pseudoodwrotność Moore–Penrose
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The learning of neural networks is becoming more and more important. Researchers have constructed dozens of learning algorithms, but it is still necessary to develop faster, more flexible, or more accurate learning algorithms. With fast learning we can examine more learning scenarios for a given problem, especially in the case of meta-learning. In this article we focus on the construction of a much faster learning algorithm and its modifications, especially for nonlinear versions of neural networks. The main idea of this algorithm lies in the usage of fast approximation of the Moore–Penrose pseudo-inverse matrix. The complexity of the original singular value decomposition algorithm is O(mn2). We consider algorithms with a complexity of O(mnl), where l < n and l is often significantly smaller than n. Such learning algorithms can be applied to the learning of radial basis function networks, extreme learning machines or deep ELMs, principal component analysis or even missing data imputation.
EN
The Linear Discriminant Analysis (LDA) technique is an important and well-developed area of classification, and to date many linear (and also nonlinear) discrimination methods have been put forward. A complication in applying LDA to real data occurs when the number of features exceeds that of observations. In this case, the covariance estimates do not have full rank, and thus cannot be inverted. There are a number of ways to deal with this problem. In this paper, we propose improving LDA in this area, and we present a new approach which uses a generalization of the Moore–Penrose pseudoinverse to remove this weakness. Our new approach, in addition to managing the problem of inverting the covariance matrix, significantly improves the quality of classification, also on data sets where we can invert the covariance matrix. Experimental results on various data sets demonstrate that our improvements to LDA are efficient and our approach outperforms LDA.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.