Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  przewidywania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Erosion induced by solid particle impingement is a very common wear mechanism in turbomachinery and Computational Fluid Dynamics is one of the most widely used tools for its prediction. In this article, erosion is modelled in one of the channels of a centrifugal pump using OpenFOAM®, which is an Open Source CFD package. A review of some of the most commonly used erosion models is carried out in an Eulerian-Lagrangian frame along with a comparative study of the erosion rates obtained with each model. Results yielded some disparities between models due to the different factors taken into consideration. The mesh is then deformed to obtain the resulting eroded geometry.
EN
The operational prediction of climatic variables in monthly-toseasonal scales has been issued by National Centers for Environmental Prediction (NCEP) through Climate Forecast System model (CFSv1) since 2004. After incorporating significant changes, a new version of this model (CFSv2) was released in 2011. The present study is based on the comparative evaluation of performances of CFSv2 and CFSv1 for the southwest monsoon season (June-July-August-September, JJAS) over India with May initial condition during 1982-2009. It was observed that CFSv2 has improved over CFSv1 in simulating the observed monsoon rainfall climatology and inter annual variability. The movement of the cell of Walker circulation in years of excessive and deficient rainfall is better captured in CFSv2, as well. The observed teleconnection pattern between ISMR-sea surface temperature (SST) is also better captured in CFSv2. The overall results suggest that the changes incorporated in CFSv1 through the development of CFSv2 have resulted in an improved prediction of ISMR.21
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.