The paper presents an unsupervised approach to biomedical signal segmentation. The proposed segmentation process consists of several stages. In the first step, a state-space of the signal is reconstructed. In the next step, the dimension of the reconstructed state-space is reduced by projection into principal axes. The final step involves fuzzy clustering method. The clustering process is applied in the kernel-feature space. In the experimental part, the fetal heart rate (FHR) signal is used. The FHR baseline and the acceleration or deceleration patterns are the main signal nonstationarities but also the most clinically important signal features determined and interpreted in computer-aided analysis.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.