W artykule przedstawiono analizę wyników badań składu popiołów lotnych z termicznego przekształcania osadów ściekowych [SSA z ang. sewage sludge ash], pobranych z trzech spalarni zlokalizowanych w Warszawie, Krakowie i Łodzi oraz oznaczono wymywania wybranych metali ciężkich z badanych popiołów lotnych i betonów zwykłych klasy C20/25 z częściową zamianą - do 20% cementu na popiół lotny. Wykonane badania laboratoryjne wykazały, że mają porównywalny skład granulometryczny, natomiast właściwości fizyko-chemiczne badanych popiołów lotnych różnią się od tradycyjnie stosowanych w technologii betonu popiołów ze spalania węgla. SSA charakteryzują się przeciętnie mniejszą zawartością tlenków krzemu, żelaza i aluminium przy wielokrotnie większej zawartości fosforu. Badania wymywania wskazują na małą mobilność metali ciężkich spełniającą polskie przepisy dotyczące możliwości wykorzystania SSA w budownictwie do określonych zastosowań. Jednocześnie nie stanowią istotnego zagrożenia dla zdrowia ludzi i nie szkodzą środowisku. Odpady budowlane zawierające SSA mogą być składowane na składowiskach odpadów obojętnych.
EN
The article presents an analysis of the results of research on the composition of fly ash from the thermal processing of sewage sludge [SSA] collected from three incineration plants located in Warsaw, Cracow and Łódź. It determines the leaching values of selected heavy metals from the tested fly ash and ordinary class concrete C20/25 with partial replacement - up to 20% of cement with fly ash. The laboratory tests performed showed that they have a comparable granulometric composition. In contrast, the physico-chemical properties of the tested fly ashes differ from ashes from coal combustion traditionally used in concrete technology. SSA is characterized by an average lower content of silicon, iron, and aluminium oxides with a much higher content of phosphorus oxides. Leaching tests indicate low mobility of heavy metals, meeting Polish regulations regarding the possibility of using SSA in construction for specific applications. At the same time, they do not pose a significant threat to human health or the environment. Construction waste containing SSA may be disposed of in inert waste landfills.
Określono wpływ rodzaju toryfikowanej biomasy i parametrów procesowych na skład generowanego gazu procesowego i jego przydatność do energetycznego zasilania procesu. Badania przeprowadzono w wielkolaboratoryjnej instalacji termicznej konwersji biomasy w reaktorze ze złożem przesuwnym, poddając procesowi toryfikacji: zrębki wierzby energetycznej i olchy, zrębki tartaczne mieszane oraz łupiny olejowca gwinejskiego. Stwierdzono, że wraz ze wzrostem stopnia przereagowania biomasy, który jest ściśle zależny od korelacji temperatury i czasu trwania procesu toryfikacji, wzrasta zarówno ilość składników niekondensujących torgazu (CO, CH₄, C₂H₄ i C₂H₆, H₂), jak i lotnych składników organicznych, smół oraz wody. Okazało się, że skład gazu procesowego zależy także od rodzaju toryfikowanej biomasy.
EN
Energy willow chips, alder chips, mixed sawmill chips and palm kernel shells were torrefied in a moving bed reactor at an av. temp. 290–355°C and biomass flow 86.3–109.3 kg/h for 8–25 min to produce a solid fuel and a process gas. AcOH, MeOH, furan derivatives, aldehydes, ketones, arom. hydrocarbons, PhOH derivatives, water and tar were evidenced in the process gas. It contained also some amts. of CO, H₂ and short-chain aliph. hydrocarbons.
Dla nikogo chyba nie jest odkryciem, że zasoby surowcowe Ziemi, w tym zasoby surowców energetycznych, nie są niewyczerpywalne. Stąd koniecznością staje się oszczędzanie surowców, powtórne wykorzystanie produktów i recykling używanych materiałów. Dotychczasowy model gospodarki linearnej dający się opisać prostym schematem: pozyskaj surowce - wyprodukuj wyrób - używaj go - pozbądź się odpadu - musi być zastąpiony innym modelem, w którym pozyskane surowce będą wykorzystywane najdłużej jak to jest możliwe - poprzez wielokrotne użycie wyprodukowanych wyrobów, a strumień powstającego odpadu będzie jak najmniejszy.
Dotychczas w sektorze gospodarki odpadami podpisano 9 umów o partnerstwie publiczno-prywatnym na kwotę stanowiącą 31% wartości wszystkich umów o PPP zawartych w Polsce. Poza wartością realizowanych projektów, sektor ten wyróżnia również wysoki poziom innowacyjności i wielopłaszczyznowy charakter przedsięwzięć.
Nowoczesna spalarnia odpadów to ostatni element niedokończonej układanki „odpadowej” w Gdańsku, jak i pozostałych gmin w regionie. Po jej uruchomieniu staniemy się doskonale zorganizowaną metropolią w tym zakresie. Doskonale zorganizowaną, czyli bezpieczną i przewidywalną, a to w gospodarce, bez względu na jej profil jest najważniejsze.
Z Ministerstwa Klimatu coraz częściej płyną oficjalne i nieoficjalne sygnały o planowanych zmianach w prawie odpadowym, które mogą mieć istotny wpływ na termiczne przekształcanie odpadów.
W listopadzie 2019 r. ukazała się decyzja wykonawcza Komisji Europejskiej 2019/2010/UE ustanawiająca konkluzje dotyczące najlepszych dostępnych technik (BAT) w odniesieniu do spalania odpadów. Dotyczy ona instalacji termicznego przekształcania odpadów wymagających uzyskania pozwolenia zintegrowanego, tj. instalacji wymienianych w Rozporządzeniu Ministra Środowiska w sprawie rodzajów instalacji mogących powodować znaczne zanieczyszczenie poszczególnych elementów przyrodniczych, albo środowiska jako całości. Są to instalacje do termicznego przekształcania odpadów innych niż niebezpieczne o wydajności przekraczającej 3 tony na godzinę lub instalacje do termicznego przekształcania odpadów niebezpiecznych o wydajności przekraczającej 10 ton dziennie. Tak więc wszystkie istniejące obecnie w naszym kraju spalarnie odpadów komunalnych podlegają tym regulacjom.
Projektując i budując zakład Termicznego Przekształcania Odpadów Komunalnych każdy właściciel stoi przed ogromnym wyzwaniem: jak efektywnie zarządzać nim nie tylko w obszarze podstawowego procesu jakim najczęściej jest spalanie, ale również jak skoordynować wszystkie informacje pojawiające się nie tylko na linii technologicznej, ale również pochodzące z wielu powiązanych z tym procesem źródeł? Tylko doświadczony zespół wie jakie to wyzwanie i potrafi odpowiednio mu sprostać. Zaprezentowane w artykule podejście do kompleksowego zarządzania informacją w takim zakładzie, pozwoli na podjęcie efektywnych działań usprawniających pracę własnych linii technologicznych.
To już ponad ćwierć wieku, odkąd RAFAKO S.A. z powodzeniem funkcjonuje na europejskim rynku instalacji termicznego przekształcania odpadów (dalej: ITPO), biorąc w tym czasie udział w realizacji ponad 70. różnych projektów spalarniowych. RAFAKO jest na tym rynku uznanym dostawcą kotłów, bądź też elementów ciśnieniowych kotłów dla tego typu instalacji wyposażonych w zdecydowanej większości w system rusztowy oraz segment oczyszczania spalin gwarantujący dochowanie obowiązujących w Unii Europejskiej norm emisyjnych.
W roku 70-lecia RAFAKO, należy z dumą podkreślić fakt, iż ostatnie ćwierć wieku istnienia firmy związane jest z obecnością firmy na europejskim rynku termicznego przekształcania odpadów (TPO). Funkcjonując jako dostawca kotłów odzyskowych, bądź też elementów ciśnieniowych kotłów do instalacji TPO, RAFAKO uczestniczyło w tym okresie w ponad 80 różnych projektach spalarniowych.
Obecnie, w lutym 2019 r. w Polsce pracuje już 8 spalarni odpadów komunalnych. Do pierwszej, uruchomionej w 2001 r. warszawskiej spalarni odpadów (ok. 40 000 Mg/r.) pod koniec 2015 r. dołączyły duże instalacje w Koninie (94 000 Mg/r.) i Białymstoku (120 000 Mg/r.). W 2016 r. uruchomiono kolejno trzy duże spalarnie: w Bydgoszczy (180 000 Mg/r.), Krakowie (220 000 Mg/r.) oraz w Poznaniu (210 000 Mg/r.). Z końcem 2017 r. dołączyła instalacja w Szczecinie (150 000 Mg/r.), zaś pod koniec 2018 r. ruszyła najnowsza instalacja w Rzeszowie (100 000 Mg/r.). Lada chwila powinna ruszyć budowa kolejnej - w Gdańsku (160 000 Mg/r.). Mamy nadzieję, że uda się jeszcze wybudować instalacje w Olsztynie (110 000 Mg/r.) i Oświęcimiu (150 000 Mg/r.) oraz nową instalację w Warszawie (265 000 Mg/r.).
Praktycznie od początku dziejów odpady towarzyszą człowiekowi w codziennej egzystencji. Obecnie jednak, w dobie intensywnego rozwoju przemysłu i wzrostu demograficznego generujemy zwielokrotnione ich strumienie. Największy problem stanowią obecnie odpady komunalne. Tak więc coraz większego znaczenia nabierają metody termicznego ich przekształcenia. Innowacyjnym sposobem radzenia sobie z tym problemem, a równocześnie idealnym miejscem do pozyskiwania czystej energii są nowoczesne spalarnie.
Prawie 107 tys. ton odpadów komunalnych przetworzył termicznie w pierwszym roku działalności Zakład Unieszkodliwiania Odpadów Komunalnych w Białymstoku. Dzięki temu procesowi ZUOK produkuje energię cieplną i elektryczną, która trafia do mieszkańców miasta. Spalarnia jest bardzo ważnych elementem kompleksowego systemu gospodarki odpadami aglomeracji, który w branży wskazywany jest jako wzorcowy w skali kraju.
Ubezpieczenie rozumiane jako „zawarcie umowy ubezpieczenia”, to główny element długiego procesu, który powinien rozpocząć się już na etapie prac przygotowawczych projektu i jest jednym z kluczowych filarów powodzenia przedsięwzięcia pod nazwą instalacja termicznego przekształcania odpadów.
The objective of the paper was to analyse possibilities and advantages of energy recovery from municipal solid waste during the thermal treatment in boilers with a moving grate system. The state of the art of Waste-to-Energy (WtE) boilers was investigated mainly by reviewing papers published in scientific journals and at conferences but also by taking into consideration reports from research institutes. The article shows the main aspects that determine the popularity of this type of boilers as well as new solutions which greatly improve the process of thermal treatment of waste. It proves that waste incineration boilers based on the moving grate technology prevail mainly because of its simplicity, reliability and effective energy generation to which special attention was paid. Additionally, the article mentions how WtE boilers are designed and operated to incinerate municipal waste with a great variation in composition with simultaneous notable energy recovery and low environmental impacts. Contemporary development of the Polish WtE infrastructure can be a very important factor influencing the national municipal waste management together with renewable energy and energy efficiency policies.
PL
Celem niniejszego artykułu było przeanalizowanie możliwości oraz korzyści związanych z odzyskiem energii z odpadów komunalnych podczas ich termicznego przekształcania w kotłach z rusztem ruchomym. Współczesny stan techniki kotłów do odzysku energii z odpadów badano głównie interpretując dokumenty, opublikowane w czasopismach naukowych i materiałach pokonferencyjnych, ale również biorąc pod uwagę raporty różnych instytucji badawczych. W artykule przedstawiono główne aspekty, które decydują o popularności tego typu kotłów, a także nowe rozwiązania, które znacznie usprawniają proces termicznego przekształcania odpadów. Wykazano, że dominującym typem kotłów do spalania odpadów komunalnych są właśnie kotły oparte na technologii rusztów ruchomych, co wynika głównie z ich prostoty, niezawodności oraz efektywnego wytwarzania energii, na co zwrócono szczególną uwagę. Dodatkowo artykuł porusza zagadnienia związane z projektowaniem i eksploatacją kotłów spalających zmienne w składzie odpady komunalne, przy równoczesnym zapewnieniu efektywnego odzysku energii oraz niskiego wpływu na środowisko naturalne. Współczesny rozwój polskiej infrastruktury spalarni odpadów może być bardzo ważnym czynnikiem wpływającym na krajową gospodarkę odpadami komunalnymi oraz na politykę odnawialnych źródeł energii i efektywności energetycznej.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.