Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  prywatność użytkownika
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, social networks have struggled to meet user protection and fraud prevention requirements under unpredictable risks. Anonymity features are widely used to help individuals maintain their privacy, but they can also be exploited for malicious purposes. In this study, we develop a machine learning-driven de-anonymization system for social networks, with a focus on feature selection, hyperparameter tuning, and dimensionality reduction. Using supervised learning techniques, the system achieves high accuracy in identifying user identities from anonymized datasets. In experiments conducted on real and synthetic data, the optimized models consistently outperform baseline methods on average. Even in cases where they do not, significant improvements in precision are observed. Ethical considerations surrounding de-anonymization are thoroughly discussed, including the responsibility of implementation to maintain a balance between privacy and security. By proposing a scalable and effective framework for analyzing anonymized data in social networks, this research contributes to improved fraud detection and strengthened Internet security.
PL
W ostatnich latach sieci społecznościowe zmagają się z problemem spełnienia wymagań dotyczących ochrony użytkowników i zapobiegania oszustwom w warunkach nieprzewidywalnych zagrożeń. Funkcje anonimowości są powszechnie stosowane, aby pomóc użytkownikom zachować prywatność, ale mogą być również wykorzystywane do celów złośliwych. W niniejszym badaniu opracowaliśmy system deanonimizacji oparty na uczeniu maszynowym, przeznaczony dla sieci społecznościowych, koncentrując się na selekcji cech, dostrajaniu hiperparametrów i redukcji wymiarowości. Dzięki technikom uczenia nadzorowanego system osiąga wysoką dokładność w identyfikowaniu tożsamości użytkowników z anonimizowanych zbiorów danych. W eksperymentach przeprowadzonych na rzeczywistych i syntetycznych danych zoptymalizowane modele konsekwentnie przewyższały metody bazowe średnio. Nawet w przypadkach, gdy tak się nie działo, zaobserwowano znaczące poprawy w zakresie precyzji. Kwestie etyczne związane z deanonimizacją zostały dokładnie omówione, w tym odpowiedzialność za wdrożenie w celu utrzymania równowagi między prywatnością a bezpieczeństwem. Proponując skalowalny i efektywny model analizy anonimizowanych danych w sieciach społecznościowych, badanie to przyczynia się do poprawy wykrywania oszustw i wzmocnienia bezpieczeństwa w Internecie.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.