Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  protein fold recognition
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Protein Data Bank (PDB) undergoes an exponential expansion in terms of the number of macromolecular structures deposited every year. A pivotal question is how this rapid growth of structural information improves the quality of three-dimensional models constructed by contemporary bioinformatics approaches. To address this problem, we performed a retrospective analysis of the structural coverage of a representative set of proteins using remote homology detected by COMPASS and HHpred. We show that the number of proteins whose structures can be confidently predicted increased during a 9-year period between 2005 and 2014 on account of the PDB growth alone. Nevertheless, this encouraging trend slowed down noticeably around the year 2008 and has yielded insignificant improvements ever since. At the current pace, it is unlikely that the protein structure prediction problem will be solved in the near future using existing template-based modeling techniques. Therefore, further advances in experimental structure determination, qualitatively better approaches in fold recognition, and more accurate template-free structure prediction methods are desperately needed.
2
Content available remote Protein fold classification based on machine learning paradigm – a review
EN
Protein fold recognition using machine learning-based methods is crucial in the protein structure discovery, especially when the traditional sequence comparison methods fail because the structurally-similar proteins share little in the way of sequence homology. Many different machine learning-based fold classification methods have been proposed with still increasing accuracy and the main aim of this article is to cover all the major results in this field.
3
Content available remote A combined SVM-RDA classifier for protein fold recognition
EN
Predicting the three-dimensional (3D) structure of a protein is a key problem in molecular biology. It is also an interesting issue for statistical methods recognition. There are many approaches to this problem considering discriminative and generative classifiers. In this paper a classifier combining the well-known support vector machine (SVM) classifier with regularized discriminant analysis (RDA) classifier is presented. It is used on a real world data set. The obtained results are promising improving previously published methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.