Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  proportional integral derivative controller
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The proportional-integral-derivative (PID) controller is widely used in various industrial applications such as process control, motor drives, magnetic and optical memory, automotive, flight control and instrumentation. PID tuning refers to the generation of PID parameters (Kp, Ki, Kd) to obtain the optimum fitness value for any system. The determination of the PID parameters is essential for any system that relies on it to function in a stable mode. This paper proposes a method in designing a predictive PID controller system using particle swarm optimization (PSO) algorithm for direct current (DC) motor application. Extensive numerical simulations have been done using the Mathwork’s Matlab simulation environment. In order to gain full benefits from the PSO algorithm, the PSO parameters such as inertia weight, iteration number, acceleration constant and particle number need to be carefully adjusted and determined. Therefore, the first investigation of this study is to present a comparative analysis between two important PSO parameters; inertia weight and number of iteration, to assist the predictive PID controller design. Simulation results show that inertia weight of 0.9 and iteration number 100 provide a good fitness achievement with low overshoot and fast rise and settling time. Next, a comparison between the performance of the DC motor with PID-PSO, with PID of gain 1, and without PID were also discussed. From the analysis, it can be concluded that by tuning the PID parameters using PSO method, the best gain in performance may be found. Finally, when comparing between the PID-PSO and its counterpart, the PI-PSO, the PID-PSO controller gives better performance in terms of robustness, low overshoot (0.005%), low minimum rise time (0.2806 seconds) and low settling time (0.4326 seconds).
PL
Układy sterujące typu PID są jednymi z najbardziej popularnych regulatorów wykorzystywanych w układach regulacji. W związku z tym znanych jest szereg metod doboru wartości ich parametrów (nastaw). Obok różnych metod inżynierskich czy analitycznych strojenia tego typu regulatorów, dostępne są również podejścia bazujące na optymalizacji. Wskaźnikiem jakości znajdującym w nich zastosowanie jest np. całka z kwadratu uchybu. W artykule przedstawiono alternatywny sposób wyznaczania nastaw regulatora z rodziny PID bazujący na rozwiązaniu liniowokwadratowego zadania optymalizacji wykorzystującego kryterium energetyczne. Uszczegóławiając, pokazano możliwość transformacji optymalnych nastaw regulatora bazującego na sprzężeniu zwrotnym od stanu obiektu w nastawy regulatora w klasycznym układzie regulacji. Jako aplikację wykorzystano nieliniowy matematyczny model dynamiki podwójnego odwróconego wahadła.
EN
The PID-type regulators are one of the most commonly used in control systems. Therefore, there are many different methods of selecting values of their parameters. Apart from various engineering or analytical methods of tuning such controllers, there are also approaches based on optimisation. In the latter case, a typical performance index is integral square error (ISE). In this paper, an alternative method of PID parameters tuning has been presented. This approach is based on a solution of the linear-square optimisation task with energy-based performance index. In the result, a state-feedback controller is obtained. Subsequently, the state-feedback gains are translated into PID regulator parameters. The proposed approach has been illustrated using a non-linear mathematical model of a double inverted pendulum.
EN
Speed control of a DC motor is critical in most industrial systems where accuracy and protection are of essence. This paper presents simulations of Proportional Integral Derivative Controller (PID) on a 16-bit PIC 24F series microcontroller for speed control of a DC motor in the presence of load torque. The PID gains have been tuned by Linear Quadratic Regulator (LQR) technique and then it is implemented on a microcontroller using MPLAB, and finally simulated for speed control of a DC motor in Proteus Virtual System Modeling (VSM) software. Proteus has built in feature to add load torque to a DC motor so simulation results have been presented in three cases speed of DC motor is controlled without load torque, with 25% load torque and with 50% load torque. In all three cases PID effectively controls the speed of DC motor with minimum steady state error.
EN
The Variable Frequency Drive (VFD) is used to control the speed of the pump-motor to attain the desired flow rate and fluid level in a fluid system. An AC drive provides efficient flow control by varying the pump-motor speed. The comparison of energy requirements and costs in a system where a throttling device is used for flow control on a centrifugal pump with the power used when an variable frequency drive (VFD) is used to control the same flow, evidently shows potential savings. In this system, AC Motor Frequency drive and static pressure transmitter, turbine type flowmeter and Analog/Digital cards, micro-control unit and computer connection are designed specially to control flow rate, fluid flow type (turbulence or laminar) and water level at the different conditions with different PID parameters.
PL
Napęd o zmiennej częstotliwości (VFD) jest stosowany do sterowania szybkością silnika pompy w celu utrzymania pożądanego poziomu płynu w systemach zawierających płyny. Napęd z silnikiem prądu zmiennego zapewnia bardziej efektywne sterowanie przepływem przez zmianę prędkości obrotowej silnika pompy. Potencjalne oszczędności stają się oczywiste gdy porówna się wymagania energetyczne (moc) i koszty w systemie gdzie do sterowania przepływem jest używany zawór dławiący na pompie odśrodkowej, do podobnych parametrów sterowania tym samym przepływem za pomocą napędu o zmiennej częstotliwości. W omawianym systemie zastosowano napęd z silnikiem prądu zmiennego o regulowanej częstotliwości, statyczny przetwornik ciśnienia, przepływomierz typu turbinowego oraz przetworniki analogowo-cyfrowe i zespół mikrosterowania współpracujący z komputerem, które zapewniają kontrolę szybkości przepływu, typu przepływu płynu (turbulentny lub laminarny) i poziomu wody w różnych warunkach.
EN
In this paper we present an algorithmic solution to PID controller parameters tuning task. Firstly, the brief test model and a simple example on how to tune PID parameters using genetic algorithm are presented. This functionality is then tested in more complicated situation of a non-stationary linear object. Adaptivity of such a solution is considered along with some results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.