Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 23

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  project scheduling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
PL
Podstawą opracowania planów zapotrzebowania na siłę roboczą w przedsiębiorstwie budowlanym jest plan produkcyjny, obejmujący przewidywany do realizacji portfel zleceń. Planowanie przebiegu realizacji zleceń z wykorzystaniem metod harmonogramowania pozwalających na analizę przebiegu realizacji procesów pod względem czasu i wykorzystania zasobów pozwala na ocenę wpływu wielkości zatrudnienia na terminowość realizacji poszczególnych przedsięwzięć. W artykule przedstawiono model matematyczny problemu harmonogramowania przedsięwzięcia z ustalonym terminem dyrektywnym (zilustrowany przykładem), obejmującego procesy powtarzalne, pozwalający na określenie racjonalnego poziomu zatrudnienia brygad roboczych.
EN
The basis for the development of labor demand plans in a construction company is the production plan, including the expected portfolio of orders. Planning the course of order execution with the use of scheduling methods that allow for the analysis of the course of the execution of processes in terms of time and resource use allows for the assessment of the impact of the number of employees on the timeliness of the implementation of individual projects. The article presents a mathematical model of the problem of scheduling a project with a fixed directive deadline (illustrated by an example), involving repetitive processes, allowing to determine a rational level of employment of work brigades.
EN
The availability of digital infrastructures and the fast-paced development of accompanying revolutionary technologies have triggered an unprecedented reliance on Artificial intelligence (AI) techniques both in theory and practice. Within the AI domain, Machine Learning (ML) techniques stand out as essential facilitator largely enabling machines to possess human-like cognitive and decision making capabilities. This paper provides a focused review of the literature addressing applications of emerging ML toolsto solve various Project Scheduling Problems (PSPs). In particular, it employs bibliometric and network analysis tools along with a systematic literature review to analyze a pool of 104 papers published between 1985 and August 2021. The conducted analysis unveiled the top contributing authors, the most influential papers as well as the existing research tendencies and thematic research topics within this field of study. A noticeable growth in the number of relevant studies is seen recently with a steady increase as of the year 2018. Most of the studies adopted Artificial Neural Networks, Bayesian Network and Reinforcement Learning techniques to tackle PSPs under a stochastic environment, where these techniques are frequently hybridized with classical metaheuristics. The majority of works (57%) addressed basic Resource Constrained PSPs and only 15% are devoted to the project portfolio management problem. Furthermore, this study clearly indicates that the application of AI techniques to efficiently handle PSPs is still in its infancy stage bringing out the need for further research in this area. This work also identifies current research gaps and highlights a multitude of promising avenues for future research.
EN
The construction contractor is concerned with reducing the cost of the project, including reducing unnecessary downtime. This is achieved when resources are fully utilized; this means the crews work continuously moving without interruption from one location to the other. However, any disturbance in the optimally scheduled workflow caused by random events is likely to result in delays, interruptions in the crews work, and productivity losses. There is therefore a need for scheduling methods that allow plans to be more resilient to disruptions and ensure a reduction in downtime and implementation costs. The authors put forward a proactive-reactive approach to the schedule risk management. Proposed method makes it possible to protect schedule deadlines from the impact of risk factors by allocating time buffers (proactive approach). It also takes into account the measures that managers take during execution in response to delays that occur, such as changing construction methods, employing extra resources, or working overtime (reactive approach). It combines both ideas and is based on project simulation technique. The merits of the proposed approach are illustrated by a case of a repetitive project to erect a number of buildings. The presented example proves that the proposed method enables the planner to estimate the scale of delays of processes’ start and consider the impact of measures to reduce duration of processes in particular locations taken in reaction to delays. Thus, it is possible to determine the optimal schedule, at which the costs of losses associated with delays and downtime are minimal.
PL
Najlepsze rezultaty realizacji przedsięwzięć budowlanych są osiągane wówczas, gdy brygady pracują bez przerw i po zakończeniu procesu na jednej części obiektu (działce roboczej) mogą rozpocząć pracę na działce kolejnej, na której zakończono wykonanie procesów poprzedzających. Dzięki ciągłości pracy brygad i powtarzalności realizacji tych samych zadań na poszczególnych działkach roboczych może wystąpić efekt uczenia się i redukcji czasu wykonania zadań. Zakłócenia w realizacji robót, na skutek oddziaływania czynników ryzyka o charakterze losowym, mogą prowadzić do opóźnień w wykonaniu procesów poprzedzających i w efekcie do przestojów w pracy brygad oraz wydłużenia czasu realizacji całego przedsięwzięcia. W związku z tym istotne jest rozwijanie metod harmonogramowania uwzględniających dynamikę rzeczywistego przebiegu wykonania procesów w zmiennych warunkach realizacyjnych. Redukcja odchyleń terminów zaplanowanych od rzeczywistych umożliwia zmniejszenie kosztów związanych z ich przekroczeniem, m.in. zamrożenia środków obrotowych w zapasach, przestojów w pracy brygad roboczych, kar umownych za niedotrzymanie terminów kontraktowych itp. Zdeterminowane terminy realizacji procesów w harmonogramie pozwalają na tworzenie planów produkcji pomocniczej, optymalizację zaopatrzenia budowy w materiały i sprzęt, pozyskiwanie zasobów ludzkich i zawieranie kontraktów z podwykonawcami. Ryzyko wystąpienia opóźnień może być uwzględnione już na etapie harmonogramowania poprzez określenie wielkości buforów czasu i ich alokację w harmonogramie. Takie podejście jest określane mianem harmonogramowania proaktywnego. Nawet mimo uodpornienia harmonogramu przy zastosowaniu metod proaktywnych, w trakcie realizacji mogą pojawić się nieprzewidziane zdarzenia, które powodują, że ochrona taka jest niewystarczająca i rozpoczęcie kolejnych zadań w zaplanowanych terminach jest niemożliwe ze względu na opóźnienia procesów poprzedzających lub niezwolnienie niezbędnych zasobów. Zachodzi wówczas konieczność reakcji - podjęcia działań redukujących odchylenia od planu lub aktualizacji planu. W reakcji na zakłócenia są podejmowane działania zmierzające do skrócenia czasu procesów jeszcze niewykonanych (zmiana wariantu technologicznego wykonania procesu, zatrudnienie dodatkowych zasobów, praca w nadgodzinach lub wydłużony tydzień pracy). W artykule zaproponowano podejście do uwzględnienia ryzyka o charakterze proaktywno-reaktywnym, wykorzystujące metodę symulacji cyfrowej w celu oszacowania wielkości opóźnień terminów rozpoczynania kolejnych procesów z uwzględnieniem reaktywnych działań redukujących czas ich wykonania na działkach roboczych, podejmowanych już w fazie realizacji. W proponowanej metodzie proaktywno-reaktywnego harmonogramowania przedsięwzięć powtarzalnych zakłada się, że czasy realizacji procesów są zmiennymi losowymi o znanej funkcji gęstości i parametrach rozkładu.
EN
It is a usual practice for a contractor to deliver several projects at a time. Typically, the projects involve similar types of works and share the same pool of resources (i.e. construction crews). For this reason, the company’s portfolio of orders considered for a particular planning horizon can be modeled as a project with repeatable processes to be performed in heterogeneous units located in a number of construction sites. Its scheduling requires determining the best sequence of the resources’ moving from unit to unit while minding the due dates related with particular orders as well as resource continuity constraints. The authors present a model of this scheduling problem in the form of a mixed-integer linear program. The aim is to schedule a portfolio of projects in a way that minimizes the total of the resource idle time-related costs, the indirect costs, and the delay penalties. The model can be solved by means of a general-purpose solver. The model is applied to schedule a portfolio of multifamily housing projects.
PL
W artykule opracowano model matematyczny umożliwiający przydział brygad roboczych do realizacji poszczególnych procesów, spośród będących w dyspozycji przedsiębiorstwa w przyjętym horyzoncie planowania, a także na ustalenie harmonogramu ich pracy - terminów realizacji przydzielonych im procesów na wznoszonych obiektach. Model ma na celu zapewnienie redukcji łącznych kosztów pośrednich i przestojów w pracy brygad oraz kar umownych. Straty spowodowane przestojami w pracy każdej brygady są obliczane jako iloczyn czasu przestoju po wykonaniu procesu na działce roboczej oraz jednostkowych (dziennych) kosztów przestoju. Wysokość kar umownych jest obliczana jako iloczyn różnicy między czasem realizacji przedsięwzięcia a czasem dyrektywnym oraz jednostkowej kary. W przypadku ukończenia realizacji w czasie krótszym od dyrektywnego wykonawca nie zostanie obciążony karami finansowymi, przyjęto również, że nie uzyska za to bonusu. Zaproponowany sposób doboru zmiennych decyzyjnych oraz zapisu analitycznego ograniczeń problemu o charakterze permutacyjnym pozwolił na sformułowanie modelu w postaci modelu mieszanego całkowitoliczbowego, do którego rozwiązania można stosować dostępne na rynku solvery. Oczywiście dotyczy to modeli problemów o niewielkiej złożoności obliczeniowej, lecz stwarza możliwość opracowania bazy przykładów testowych i weryfikacji jakości tworzonych w przyszłości algorytmów dedykowanych. Zaproponowane podejście do modelowania i rozwiązania problemu szeregowania zleceń przedsiębiorstwa przedstawiono na przykładzie realizacji stanu surowego zamkniętego sześciu budynków wielorodzinnych wznoszonych w technologii monolitycznej (fundamenty, ściany i stropy żelbetowe monolityczne; stropodach z żelbetowych płyt prefabrykowanych z warstwami izolacyjnymi; ściany ocieplone z wykorzystaniem ETICS (External Thermal Inusulation Composite System). Realizacja każdego obiektu wymaga wykonania następujących procesów powierzanych do wykonania odrębnym brygadom branżowym: roboty ziemne i fundamentowe (stan zero), konstrukcja monolityczna żelbetowa (stan surowy), dach, elewacja. Realizacja tych obiektów stanowi portfel zleceń analizowanego przykładowego przedsiębiorstwa w okresie jednego roku.
EN
Duration of construction projects can be reduced by harmonizing construction processes: adjusting productivity rates of specialized crews and enabling the crews to work in parallel as in a production line. This is achievable in the case of projects whose scope can be divided into units where a similar type of work needs to be conducted in the same sequence. A number of repetitive project scheduling methods have been developed to assist the planner in minimizing the execution time and smoothing resource profiles. However, the workflow, especially in construction, is subject to disturbance, and the actual process durations are likely to vary from the as-scheduled ones. The inherent variability of process durations results not only in delays of a particular process in a particular unit but also in the propagation of disruptions throughout the initially well-harmonized schedule. To counteract the negative effects of process duration variability, a number of proactive scheduling methods have been developed. They consist in some form of predicting the conditions to occur in the course of the project and implementing a strategy to mitigate disturbance propagation. This paper puts forward a method of scheduling repetitive heterogeneous processes. The method aims to reduce idle time of crews. It is based on allocating time buffers in the form of breaks between processes conducted within units. The merits of the method are illustrated by an example and assessed in the course of a simulation experiment.
PL
W celu redukcji czasu realizacji obiektów budowlanych, poprzez umożliwienie równoległej pracy brygad roboczych, jest konieczny ich podział na mniejsze części (działki robocze) o wielkości zbliżonej do wielkości frontu pracy brygad. Brygady realizują na kolejnych działkach podobne zadania, dostosowane do kwalifikacji zawodowych posiadanych przez jej członków. Do harmonogramowania realizacji przedsięwzięć powtarzalnych opracowano wiele metod, głównie dla warunków deterministycznych, gwarantujących z jednej strony minimalizację czasu ich realizacji a z drugiej zapewnienie ciągłości pracy brygad. Przestoje w pracy brygad są niekorzystne ze względu na niewykorzystanie potencjału produkcyjnego i straty finansowe spowodowane koniecznością wypłaty wynagrodzenia za gotowość do pracy lub przerzuty na inne place budowy, czy też skierowanie do realizacji innych mniej płatnych robót. Tego typu przestoje można wyeliminować w przypadku, gdy możliwe jest zachowanie stałego rytmu pracy, czyli gdy wielkość działek jest jednakowa (działki jednotypowe), bądź występuje zależność proporcjonalna między ich wielkością a pracochłonnością robót każdego rodzaju (działki jednorodne). Eliminacja przestojów prowadzi wówczas do minimalizacji czasu realizacji całego przedsięwzięcia. W przypadku działek niejednorodnych (o różnej wielkości i pracochłonności robót) zapewnienie ciągłości pracy brygad paradoksalnie powoduje wydłużenie czasu realizacji przedsięwzięcia (ze względu na późniejsze rozpoczynanie pracy kolejnych brygad). Na skutek zakłóceń realizacyjnych i oddziaływania czynników ryzyka czasy wykonania procesów na działkach roboczych są zmienne - mogą różnić się od planowanych, przyjmowanych przy tworzeniu harmonogramu. Zmienność czasów wykonania prowadzi do opóźnień w przekazywaniu frontów robót kolejnym brygadom i w efekcie do zakłóceń w ciągłej realizacji ciągów procesów i niedotrzymywania terminów dyrektywnych. Najczęściej stosowanym sposobem zapewnienia ochrony terminów dyrektywnych jest alokacja buforów czasu w harmonogramie. W artykule zaproponowano podejście do alokacji buforów umożliwiające zarówno zwiększenie niezawodności dotrzymania terminu dyrektywnego zakończenia przedsięwzięcia, jak i redukcję przestojów w pracy brygad.
PL
Terminowa i sprawna realizacja przedsięwzięć budowlanych oraz redukcja czasu ich wykonania wpływają na efektywność ekonomiczną inwestycji i działalności gospodarczej wielu podmiotów zaangażowanych w proces inwestycyjny. Cechą specyficzną produkcji budowlanej jest znaczna podatność na oddziaływanie zmiennych warunków realizacji, dlatego też przy harmonogramowaniu nie powinno się pomijać wpływu oddziaływania czynników ryzyka. Wiele przedsięwzięć budowlanych składa się z powtarzalnych procesów, są to m.in. budowy osiedli domów mieszkalnych, budowy obiektów wysokich i wielosekcyjnych, dróg, tuneli, instalacji itd. W celu redukcji czasu ich wykonania obiekty te dzieli się na działki robocze, na których powtarzane jest wykonywanie procesów przez brygady robocze o odpowiednich kwalifikacjach. W przypadku, gdy działki różnią się wielkością i nie występuje zależność wprost proporcjonalna pomiędzy ich wielkością i pracochłonnością robót (jednakowa dla każdego ich asortymentu), na czas realizacji przedsięwzięcia oraz na inne parametry wpływa kolejność zajmowania działek przez brygady. W artykule została przedstawiona metoda wyboru optymalnego harmonogramu robót powtarzalnych realizowanych na działkach niejednorodnych w warunkach ryzyka i optymalnej permutacji działek roboczych. Analizowany problem opisano za pomocą modelu programowania stochastycznego z funkcją celu minimalizującą łączne straty finansowe spowodowane niedotrzymaniem terminu dyrektywnego przedsięwzięcia, wydłużeniem okresu zatrudnienia brygad i czasu realizacji poszczególnych obiektów, na skutek przestojów spowodowanych zjawiskami losowymi. Ze względu na probabilistyczny charakter parametrów rozpatrywanego problemu do jego rozwiązania zaproponowano procedurę bazującą na zastosowaniu metody symulacji komputerowej oraz algorytmów metaheurystycznych lub – w przypadku problemów o małej złożoności z niewielką liczbą działek roboczych – metody przeglądu zupełnego zbioru rozwiązań dopuszczalnych.
EN
Most scheduling methods used in the construction industry to plan repetitive projects assume that process durations are deterministic. This assumption is acceptable if actions are taken to reduce the impact of random phenomena or if the impact is low. However, construction projects at large are notorious for their susceptibility to the naturally volatile conditions of their implementation. It is unwise to ignore this fact while preparing construction schedules. Repetitive scheduling methods developed so far do respond to many constructionspecific needs, e.g. of smooth resource flow (continuity of work of construction crews) and the continuity of works. The main focus of schedule optimization is minimizing the total time to complete. This means reducing idle time, but idle time may serve as a buffer in case of disruptions. Disruptions just happen and make optimized schedules expire. As process durations are random, the project may be delayed and the crews’ workflow may be severely affected to the detriment of the project budget and profits. For this reason, the authors put forward a novel approach to scheduling repetitive processes. It aims to reduce the probability of missing the deadline and, at the same time, to reduce resource idle time. Discrete simulation is applied to evaluate feasible solutions (sequence of units) in terms of schedule robustness.
EN
Redundancy based methods are proactive scheduling methods for solving the Project Scheduling Problem (PSP) with non-deterministic activities duration. The fundamental strategy of these methods is to estimate the activities duration by adding extra time to the original duration. The extra time allows to consider the risks that may affect the activities durations and to reduce the number of adjustments to the baseline generated for the project. In this article, four methods based on redundancies were proposed and compared from two robustness indicators. These indicators were calculated after running a simulation process. On the other hand, linear programming was applied as the solution technique to generate the baselines of 480 projects analyzed. Finally, the results obtained allowed to identify the most adequate method to solve the PSP with probabilistic activity duration and generate robust baselines.
EN
A typical project consists of many activities. Logical dependencies cause some of them to be critical and some non-critical. While critical activities have a strict start time, in some projects the problem of selecting the start time of a non-critical activity may arise. Usually, it is possible to use the “as soon as possible” or “as late as possible” rules. Sometimes, however, the result of such a decision depends on external factors, e.g., an exchange rate. In this paper, we consider the multi-criteria problem of determining the start time of a non-critical activity. We assume that the earliest start and the latest start times of the activity have been identified using the critical path method, but the project manager is free to select the time when the activity will actually be started. This decision, however, cannot be changed later, as it is associated with the allocation of key resources. The criteria that are usually considered in such a situation are cost and risk. We assume that the cost depends on an exchange rate. We also consider the risks of project delay and a decrease in quality. This paper formulates the selection of the start time for a non-critical activity as a discrete dynamic multicriteria problem. We solve it using an interactive procedure based on the analysis of trade-offs.
EN
In this article, the author analyses the state of the research of the multi-mode, resource-constrained, projectscheduling problem (MRCPSP). Both general and construction-industry-specific applications were studied and compared– in particular, algorithms and methodologies used for solving the different variations of this scheduling problem. Based on the analysis, the author suggests future research ideas.
PL
W artykule analizowane jest zagadnienie problemu harmonogramowania przedsięwzięć budowlanych z ograniczoną dostępnością zasobów i z czynnościami wielotrybowymi (MRCPSP). Autor bada literaturę dotyczącą problemów MRCPS oraz dotychczasowych zastosowań w przemyśle budowlanym. W szczególności przedstawiono stosowane algorytmy obliczeniowe oraz metodykę podejścia do poszczególnych odmian tego problemu. Na podstawie analizy wskazano możliwe kierunki rozwoju.
PL
Przedsięwzięcia budowlane często obejmują swym zakresem roboty wielokrotnie powtarzane na identycznych lub podobnych obiektach lub ich częściach, zwanych działkami roboczymi. Ze względu na cykliczny charakter procesów budowlanych jest możliwe zastosowanie teorii uczenia i zapominania do planowania realizacji przedsięwzięć budowlanych. W artykule przedstawiono przykład zastosowania teorii uczenia i zapominania w procesie planowania realizacji wielokondygnacyjnego budynku mieszkalnego w warunkach losowych.
EN
Construction projects encompass repetitive works carried out on the same or similar object parts, called working units. Due to the cyclical nature of construction processes it is possible to use the learning-forgetting theory to construction projects scheduling. The article shows an example of using learning-forgetting theory in the planning of implementation multi-storey residential building in random conditions.
EN
In this paper, discrete-continuous project scheduling problems with preemptable activities are considered. In these problems, activities of a project simultaneously require discrete and continuous resources for their execution. The activities are preemptable, and the processing rate of each activity is a continuous, increasing function of the amount of a single continuous resource allotted to the activity at a time. The problem is to find a precedence- and discrete resource-feasible schedule and, simultaneously, continuous resource allocation that would minimize the project duration. Convex and concave processing rate functions are considered separately. We show that for convex functions the problem is simple, whereas for concave functions a special methodology has to be developed. We discuss the methodology for three cases of the problem: no discrete resource constraints, one discrete resource being a set of parallel, identical machines, and an arbitrary number of discrete resources. In each case we analyze separately independent and precedence-related activities. Some conclusions and directions for future research are given.
EN
Many construction projects contain several identical or similar units, such as floors in multistory buildings, houses in housing developments, sections of pipelines or highways. Repetitive processes arise from the subdivision of a generalized construction process into specific activities associated with particular units. In many cases it is possible to perform individual processes (repeated in each units) in alternative ways (modes). Regardless of the construction project procurement system, duration and cost are the key factors determining project’s economic efficiency and fulfillment of the owner’s needs and requirements. Minimizing project duration and cost are the most important criteria for schedule optimization. Processes that repeat from unit to unit are realized by specialized crews. Uninterrupted resource utilization becomes an extremely important issue for scheduling repetitive processes to minimize employment costs. In this paper, the problem of selecting appropriate modes and minimizing the total project cost and with a constraint on project duration is presented with respect to the continuity of the crews’ work. The paper uses the mixed integer linear programming to model this problem and uses a case study to illustrate it.
PL
W artykule przedstawiono autorską koncepcję sposobu szacowania wielkości buforów czasu w harmonogramowaniu projektów. Zaproponowane podejście do określania wielkości buforów, bazujące na wykorzystaniu teorii zbiorów rozmytych, stanowi oryginalną modyfikację metody łańcucha krytycznego. Pozwala to wyznaczyć taką wielkość buforów, dla których prawdopodobieństwo realizacji projektu zgodnie z terminem dyrektywnym będzie wynosić co najmniej 90%. Tak ustalony harmonogram projektu daje większe szanse terminowej realizacji w odniesieniu do rzeczywistych warunków rynkowych i może być traktowany jako jeden z podstawowych czynników sukcesu projektu.
EN
The article presents the author's conception of the estimating the time buffer size in project scheduling. The proposed approach for determining the buffer size based on the use of fuzzy set theory. It is an original modification of the critical chain method. This allows the determining the buffer size for which the probability of the project realization in accordance with the deadline is at least 90%. Such project schedule has a better chance of timely implementation in relation to the real market conditions and may be regarded as one of the key factors in the success of the project.
14
Content available remote Assignment problem and its extensions for construction project scheduling
EN
The assignment problem consists of allocating renewable resources (construction equipment, crews, or contractors) of limited availability to a set of activities. The classical model for this problem minimizes the total time or cost of completing all activities with the assumption that each activity is assigned to one particular resource. This paper systematizes and describes extensions of these assumptions, considering the effects of task sequence: parallel, serial and hybrid (modeled by means of network methods). This study proposes algorithms for the solution of presented models, which can be used in construction project scheduling.
PL
W zagadnieniu przydziału (znanym również w literaturze pod nazwą zagadnienia rozmieszczenia) rozważa się problem alokacji ograniczonej liczby zasobów odnawialnych (maszyn, brygad, wykonawców) do realizacji zbioru zadań. W klasycznym modelu tego problemu jest minimalizowany łączny czas lub koszt wykonania wszystkich zadań przy założeniu, że każda jednostka organizacyjna jest przydzielona do realizacji innego procesu. W artykule przedstawiono usystematyzowanie i modyfikacje tych założeń z uwzględnieniem różnej kolejności realizacji procesów: równoczesnej, kolejnej i mieszanej (modelowanej za pomocą metod sieciowych). Zaproponowano algorytmy rozwiązania opracowanych modeli, które mogą być stosowane w harmonogramowaniu procesów budowlanych.
EN
The project portfolio scheduling problem as a multiple criteria decision making problem and a three step procedure to solve this problem have been presnted. In the first step, the problem was described by a multiple criteria mathematical model. Three criteria have been considered: minimization of the sum of penalties for projects delays, minimization of resource overuse and NPV maximization. In the second step, non-dominated solutions were identified by using an elitist evolutionary algorithm for multiple optimization. In the third step, an interactive procedure has been applied to choose the final solution. An example of a portfolio of IT projects was used for computations.
16
Content available Project oriented production optimization
EN
In this paper the resource - constrained scheduling problem is discussed. The objective function is minimization of makespan under constrained resources and due time. The metaheuristic based on Ant Colony Optimization (ACO) is proposed for multi-project scheduling. The elaborated method, algorithm and example illustrating ACO application for the multi-project scheduling problem is presented.
EN
The resource-constrained project scheduling problem (RCPSP) has received the attention of many researchers because it can be applied in a wide variety of real production and construction projects. This paper presents a genetic algorithm (GA) solving the RCPSP with the objective function of minimizing makespan. Standard genetic algorithm has to be adapted for project scheduling with precedence constraints. Therefore, an initial population was generated by a random procedure which produces feasible solutions (permutation of jobs fulfilling precedence constraints). Besides, all implemented genetic operators have taken sequential relationships in a project into consideration. Finally, we have demonstrated the performance and accuracy of the proposed algorithm. Computational experiments were performed using a set of 960 standard problem instances from Project Scheduling Problem LIBrary (PSPLIB) presented by Kolisch and Sprecher [1]. We used 480 problems consisting of 30 jobs and 480 90-activity instances. We have tested effectiveness of various combinations of parameters, genetic operators to find the best configuration of GA. The computational results validate the good effectiveness of our genetic algorithm.
EN
An optimal resource allocation approach to stochastic multimodal projects had been previously developed by applying a Dynamic Programming model which proved to be very demanding computationally. A new approach, the Electromagnetism-like Mechanism, has also been adopted and implemented in Matlab, to solve this problem. This paper presents the implementation of the Electromagnetism approach using an Object Oriented language, Java, and a distributed version to be run in a computer network, in order to take advantage of available computational resources.
EN
Risk management problem was shown in the paper. Relationship between risk management and production process scheduling was analyzed. Different types of data analysis were presented. Toothed gear production process was taken as an example of task timing estimation.
20
EN
The aim of this paper is to present a modelling heuristic framework that enables one to cope with a problem of a project-driven manufacturing. The objective is to find computationally effective method aimed at scheduling of a new project subject to constraints imposed by a multi-project environment. The application of a heuristic method of scheduling is demonstrated on one example of a makespan-feasible schedule that follows the constraints imposed by the precedence relation and by the time-constrained resources availability. This heuristic method is based on concept of critical path and branch and bound scheme.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.