Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  processor allocation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Energy characteristic of a processor allocator and a network-on-chip
EN
Energy consumption in a Chip MultiProcessor (CMP) is one of the most important costs. It is related to design aspects such as thermal and power constrains. Besides efficient on-chip processing elements, a well-designed Processor Allocator (PA) and a Network-on-Chip (NoC) are also important factors in the energy budget of novel CMPs. In this paper, the authors propose an energy model for NoCs with 2D-mesh and 2D-torus topologies. All important NoC architectures are described and discussed. Energy estimation is presented for PAs. The estimation is based on synthesis results for PAs targeting FPGA. The PAs are driven by allocation algorithms that are studied as well. The proposed energy model is employed in a simulation environment, where exhaustive experiments are performed. Simulation results show that a PA with an IFF allocation algorithm for mesh systems and a torus-based NoC with express-virtual-channel flow control are very energy efficient. Combination of these two solutions is a clear choice for modern CMPs.
EN
With the opportunities and benefits offered by Chip Multiprocessors (CMPs), there are many challenges that need to be addressed in order to exploit the full potential of CMPs. Such aspects as parallel programs, interconnection design, cache arrangement and on-chip cores allocation become a limiting factor. To ensure validity of approaches and research, we propose an evaluation system for CMPs with Network-on-Chip (NoC) and processor management system integrated on one die. The suggested experimentation system is described in details. The proposed system that is used for tests and results of the experiments are presented and discussed. As decision making criteria, we consider energy efficiency of Processor Allocator (PA) and NoC, as well as NoC traffic characteristic (load balance). In order to improve the system understanding, brief overview on most important NoC and PA architectures is also presented. Analyzed results reveal that CMP with a PA controlled by IFF allocation algorithm for mesh systems and torus-based NoC driven by DORLB routing with express-virtual-channel flow control achieved the best traffic balance and energy characteristic.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.