Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  problem brzegowo-początkowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Jednym z podstawowych problemów numerycznego rozwiązywania modelu matematycznego procesu fizycznego jest określenie dokładności otrzymanych wyników. Schematy numeryczne, bezwarunkowo stabilne i zbieżne w przestrzeni liczb rzeczywistych, w zbiorze liczb zmiennoprzecinkowych mogą okazać się niestabilne i niezbieżne. W skrajnych przypadkach obliczenia mogą stać się niewykonalne lub prowadzić do rozwiązania wirtualnego problemu numerycznego. Analiza błędu rozwiązania numerycznego może pozwolić na otrzymywanie wyników o kontrolowanej dokładności i określanie optymalnych wartości parametrów numerycznych schematu i modelu. W artykule zaproponowano przykład analizy błędu rozwiązania numerycznego i wykazano jej przydatność w rozwiązywaniu problemu brzegowo-początkowego w nieskończonym układzie cylindrycznym z wewnętrznym źródłem ciepła, mającego zastosowanie m.in. przy obliczeniach wymienników ciepła, wymiany ciepła w prętach i rurach w procesach przeróbki plastycznej, wymiany ciepła przy ciągłym odlewie metali i stopów. Wykazano zależność pomiędzy parametrami schematu numerycznego, zapewniającą otrzymanie poprawnego rozwiązania w zbiorze liczb zmiennoprzecinkowych.
EN
One of the fundamental problems in numerical solution of a mathematical model of physical process is determination of the results accuracy. The unconditional convergence and stability of numerical schemes are usually confirmed in real number system, which is an abstract mathematical concept. Computations are realized in the floating-point numbers system, which is imperfect discrete representation of the real number system in computer’s memory. The basic properties of real numbers do not suit sufficiently to the basic properties of floating-point numbers, what could be a result of the computational errors, causing the improper solution. In extreme situation the choice of wrong computational parameters cannot give the solution or leads to the solution of virtual numerical problem. Solution obtained in such a way could still be taken as a proper one, because sometimes it is difficult to distinguish difference between the real and virtual solutions. The error analysis, a set of numerical solution methods, can give the results of controlled accuracy and can help to determine the optimal values of parameters of numerical schema and mathematical model. Error analysis is too difficult to be automated, but it is possible with numerical experiment. In this paper the error analysis is proposed and its usefulness is indicated for the initial-boundary problem of heat transfer, with inner heat source, in cylindrical coordinates system. Such system can be found, inter alia, in the analysis of heat exchangers, heat transfer in rods and tubes in the plastic deforming processes, heat transfer during the process of continuous casting of metals and alloys. The importance of the error analysis is emphasized. Relation between parameters of numerical schema, which ensures proper solution in floating-point numbers system, is stated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.