Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pressure driven membrane processes
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents the possibilities of employing an integrated flocculation/ultrafiltration system in the treatment of washings generated upon the rinsing of filter beds in pool water installations. Single ultrafiltration process was used as a comparator. Flocculation was carried out using commercial dialuminium pentahydroxychloride solution widely used at pool facilities for the removal of contaminants in flocculation processes. The studies consisted in determination of correlations between the conditions of the flocculation process (variable doses of Al3+ ions: from 4 to 280 mg/L) and the transport/separation characteristics of ultrafiltration membranes. Flocculation was performed at different temperatures of washings i.e. 8, 21, and 30°C for each of the pre-defined doses. Ultrafiltration was highly capable of reducing the turbidity of washings and removing a large group of contaminants as determined by turbidimetry and UV254 absorbance measurements. The studies revealed that the best transport/ separation characteristics of ultrafiltration membranes were obtained in a system in which ultrafiltration was performed following flocculation of washings carried out at 21°C using a 40 mgAl3+/L solution. The turbidity was reduced by ca. 99% and UV absorption was reduced by ca. 94% while the relative volumetric stream of the permeate increased by more than 35% (as compared to the filtration of washings in a single-process system). Membrane ultrafiltration significantly increased the quality of the waste stream consisting of washings from the pool water installation. Pre-processing of washings is required before ultrafiltration in order to limit the blocking of membrane pores. Flocculation may be one of such pre-processing methods.
PL
W pracy przedstawiono możliwość wykorzystania membranowego procesu ultrafiltracji do oczyszczania popłuczyn z instalacji basenowych. Badania obejmowały proces jednostkowy ultrafiltracji oraz zintegrowany układ napowietrzanie-ultrafiltracja, który pozwolił na częściowe usunięcie zanieczyszczeń występujących w nadawie. Porównano membrany o zróżnicowanym materiale polimerowym oraz różnej wartości granicznej masy molowej cut-off. Określono wpływ zastosowanego procesu wstępnego na zdolności transportowo-separacyjne membran o różnych własnościach fizyczno-chemicznych. Uzyskano wysoką wydajność hydrauliczną we wszystkich prowadzonych filtracjach (w zakresie od 1,23·10-5 do 1,40·10-7 m³/m²·s). W zakresie usuwania mętności badane układy charakteryzowały się współczynnikiem usunięcia przekraczającym 90%. Odnotowano znaczące usunięcie grupy zanieczyszczeń opisanych przez wskaźnik ogólny, tj. absorbancję w nadfiolecie UV254. Przeprowadzone badania wykazały możliwość wykorzystania ultrafiltracji do odzysku wody basenowej z popłuczyn poprocesowych.
EN
The paper presents the possibility of using the membrane ultrafiltration process for the treatment of washings from pool water systems. The tests included a unit ultrafiltration process and airing-ultrafiltration integrated system which partly removed contamination from the feed material. Membranes of various polymere materials and molar mass cut-off were compared. This helped to determine the influence of the used initial process on transport and separation abilities of the membranes of different physical and chemical features. High hydraulic performance was obtained in all performed filtration actions (1.23·10-5 ÷ 1.40·10-7 m³/m²·s). In respect of fighting turbidity, all tested systems had a removal rate of more than 90%. It was also noted that a significant amount of contamination described by the general indicator, which is specific UV254 absorbance, was removed. The tests proved that ultrafiltration can be used for recovery pool water from post-process washings.
PL
Ultrafiltracja (UF) i mikrofiltracja (MF) mogą wspomóc i polepszyć proces dezynfekcji wody i ścieków metodami tradycyjnymi, ponieważ membrana stanowi barierę dla wirusów, bakterii i pierwotniaków. Do mikrozanieczyszczeń organicznych, występujących w wodach i ściekach, należy zaliczyć uboczne produkty dezynfekcji i utleniania chemicznego. Ich prekursorami są naturalne substancje organiczne (NOM), których usuwanie jest jedną z najważniejszych operacji w technologii uzdatniania i oczyszczania wody. Chlorowanie, stosowane w uzdatnianiu wody, powoduje tworzenie się związków halogenoorganicznych, w tym głównie trihalometanów i kwasów halogenooctowych. Poprzez wprowadzenie ciśnieniowych technik membranowych do uzdatniania wody można usuwać NOM i kontrolować powstawanie ubocznych produktów dezynfekcji. Stosuje się albo bezpośrednio nanofiltrację/odwróconą osmozę, albo systemy zintegrowane, stanowiące połączenie UF lub MF z koagulacją i adsorpcją na węglu aktywnym. Antropogeniczne mikrozanieczyszczenia organiczne to przede wszystkim substancje endokrynnie aktywne (EDC) oraz pozostałości farmaceutyków. Do EDC zalicza się szeroką gamę mikrozanieczyszczeń, przede wszystkim: halogenowe związki organiczne, w tym dioksyny, furany, polichlorowane bifenyle oraz pestycydy, wielopierścieniowe węglowodory aromatyczne, substancje powierzchniowo czynne, alkilofenole, ftalany, hormony naturalne i syntetyczne oraz syntetyczne farmaceutyki. Ciśnieniowe procesy membranowe stanowią skuteczną metodę usuwania rozpuszczalnych w wodzie związków organicznych w uzdatnianiu wód naturalnych. Wyższy stopień usunięcia, a w wielu przypadkach całkowite usunięcie farmaceutyków i EDC poniżej poziomu wykrywalności osiąga się w procesach nanofiltracji/odwróconej osmozy. Do ich usuwania można też stosować systemy zintegrowane, łączące UF lub MF z koagulacją, adsorpcją na węglu aktywnym czy utlenieniem. W przypadku ścieków ważną rolę mogą odegrać bioreaktory membranowe.
EN
Drinking water containing biologically active substances, i.e. viruses, bacteria and protozoa, as well as other microorganisms, is a significant health threat. This also applies to the treated and the raw wastewaters discharged into the receiver. Ultrafiltration and microfiltration can help and improve the process of water disinfecting using traditional methods, because membrane is a barrier for microorganisms. Viruses can be retained by ultrafiltration membranes, whereas bacteria and protozoa using ultrafiltration and microfiltration membranes. For the removal of natural organic matter it is possible to use successfully either direct nanofiltration or integrated systems combining ultrafiltration or microfiltration with coagulation, adsorption on activated carbon, and even with oxidation. Natural organic matter and some other anthropogenic organic pollutants can be precursors of disinfection by-products, and that is why NOM removal from water is very important. Nanofiltration and to some extent reverse osmosis are the methods for the removal of the micro-pollutants from water and wastewaters, among them the most important are disinfection by-products, pharmaceutical active compounds and endocrine disrupting compounds which have high biological activity. In the first case, volatile trihalomethanes, and non-volatile compounds, mainly halogenacetic acids, are formed. To this last group of compounds, special attention in natural waters is paid onto polycyclic aromatic hydrocarbons and surface-active substances, chlorinated pesticides, phthalates, alkylphenols, polychlorinated biphenyls, hormones, synthetic pharmaceuticals and other chemicals and substances produced by man and put into the environment. Application of microfiltration and ultrafiltration in micro-pollutants removal is possible in integrated systems: with coagulation and adsorption processes, through polymer complexation and surfactant bounding. Also membrane bioreactors are useful in the removal of organic pollutants. The problems in operation of low-pressure-driven membrane processes is membrane fouling, responsible for continuous decrease of membrane flux and permeate quality in time.
4
EN
A number of inorganic anions and metals, especially heavy metals, at certain conditions, have been found in potentially harmful concentrations in numerous water sources. The maximum permissible levels of these compounds, in drinking water and wastewaters discharged to environment, set by the WHO and a number of countries are very low (from μg/dm3 to a few mg/dm3). Several common treatment technologies, which are nowadays used for removal of inorganic contaminants from natural water supplies, represent serious exploitation problems. Membrane processes such as reverse osmosis and nanofiltration, ultrafiltration and microfiltration in integrated systems, Donnan dialysis and electrodialysis as well as membrane bioreactors, if properly selected, offer the advantage of producing high quality drinking water without inorganic substances as well as purified wastewater which can be drained off to natural water sources.
PL
Szereg anionów nieorganicznych i metali, w tym metale ciężkie, występuje w potencjalnie szkodliwych stężeniach w licznych źródłach wody do picia. Maksymalne dopuszczalne wartości ich stężeń w wodzie do picia, ustalone przez WHO i szereg krajów, są bardzo niskie (w zakresie od μg/dm3 do kilku mg/dm3). Kilka tradycyjnych technologii, które stosuje się obecnie do usuwania zanieczyszczeń nieorganicznych ze źródeł wody naturalnej, stwarza poważne problemy eksploatacyjne. Procesy membranowe, odwrócona osmoza (RO), nanofiltracja (NF), ultrafiltracja (UF) i mikrofiltracja (MF) w systemach zintegrowanych, dializa Donnana (DD) i elektrodializa (ED) oraz bioreaktory membranowe (MBR), właściwie dobrane, umożliwiają produkcję wody do picia o wysokiej jakości i pozbawioną mikrozanieczyszczeń nieorganicznych, jak również oczyszczone ścieki, które mogą być odprowadzone do źródeł wód naturalnych.
5
Content available remote Zaawansowane techniki membranowe - teoria i praktyka
PL
Przedstawiono kompendium wiedzy na temat zasadniczych problemów dotyczących membran syntetycznych i technik membranowych, ze szczególnym uwzględnieniem technik membranowych, których siłą napędową jest różnica ciśnień po obu stronach membrany. Omówiono przede wszystkim: klasyfikacje procesów membranowych i membran, ciśnieniowe techniki membranowe, zjawiska polaryzacji stężeniowej i "foulingu" membran, metody zapobiegania zmniejszaniu wydajności membrany, moduły membranowe, projektowanie systemów membranowych oraz zastosowanie technik membranowych w ochronie środowiska. Ze względu na zmieniające się podejście co do koncepcji uzdatniania wód do celów konsumpcyjnych, przede wszystkim wzrastające wymagania odnośnie do jakości wody do picia, technologie membranowe są obecnie brane pod uwagę jako procesy alternatywne w uzdatnianiu wody. W tej dziedzinie stosuje się je najczęściej do odsalania i zmiękczania wody oraz uzdatniania wody do picia i na potrzeby gospodarcze. W regionach silnie uprzemysłowionych powstają ścieki zawierające znaczne ilości substancji pochodzenia przemysłowego, które charakteryzują się nierównomiernością stężenia oraz różnorodnością zawartych zanieczyszczeń. Ich oczyszczanie wymaga szeregu wzajemnie uzupełniających się technologii, które pozwalają na ponowne wykorzystanie oczyszczonej wody (ścieków) do celów komunalnych lub przemysłowych, a równocześnie na odzysk substancji wartościowych zawartych w ściekach. Przykładami są tutaj ścieki emulsyjne, pochodzące z przemysłu tekstylnego, celulozowo-papierniczego i rolno--spożywczego oraz odcieki z wysypisk odpadów starych.
EN
Membrane separations have been in use for a variety of commercial applications: in environmental protection, water and wastewater treatment, gas separation, food and pharmaceutical industries, medical applications, etc. Every day thousands tons of food, blood serum, millions tons of wastewater and water, are treated with membranes. Some membrane processes are reasonable well understood and have been commercialized for some period of time. Other membrane processes have only recently been employed in commercial applications, and still other processes are only in formative research stages. The article gives a comprehensive compendium of the basic problems in the field of synthetic membranes and membrane techniques, especially pressure driven membrane processes. The following topics are covered: classification of membrane processes and membranes, membrane modules and designing membrane systems, reasons and results of flux decrease and methods to preventing this phenomenon as well as the main applications of membrane processes. Three basic types of membranes can be distinguished based on structure and separation principles: porous membranes, nonporous membranes and liquid membranes. Pressure driven membrane processes (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) are most important because they have the greatest industrial applications. Because of driving force, i.e. the applied pressure, the solvent and some molecules permeate through membrane, whereas other molecules or particles are rejected. As we go from microfilfiltration through ultrafiltration to hyperflltration, the size (molecular weight) of the particles or molecules separated diminishes and consequently the pore size in the membrane must become smaller. An important factor, which determines the application of membranes, is to recognize the reasons for the drop of permeate flux in the function of time, and to describe them with relatively simple mathematical relations. The phenomena, that limited the mass transfer during the realization of membrane processes, are concentration polarization and fouling. They take place simultaneously and their effects impose on each other. Concentration polarization is the steady-state process, which leads to stabilization of flux. The result of fouling is, in the contrary, continuously drop of permeate flux. Membrane processes are applied in environmental protection. Due to changes in the approach to water treatment for consumption purposes and the growing requirements imposed on the quality of potable water, membrane technologies are currently viewed as alternative processes in water treatment operations. The treatment of industrial wastewaters necessitates application of a number of complementary technologies which would ensure the removal of impurities to such a degree that the treated water (wastewater) could be used again for municipal or industrial purposes, with simultaneous recovery of valuable substances present in these wastewaters. Desalination of sea, brackish and mine water, softening of natural water and treatment for drinking water purpose as well as the removal of nitrates and volatile organics by membrane techniques, are the examples of application of membranes in water treatment. As examples for wastewater treatment, emulsion wastewater, wastewater coming from textile, pulp and paper and agro-food industries have been noted. Also treatment of landfill leachate, removal of metals and utilization of membrane bioreactors to organics wastewater treatment were mentioned.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.