Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  premature ventricular contraction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote An improved cardiac arrhythmia classification using an RR interval-based approach
EN
Accurate and early detection of cardiac arrhythmia present in an electrocardiogram (ECG) can prevent many premature deaths. Cardiac arrhythmia arises due to the improper conduction of electrical impulses throughout the heart. In this paper, we propose an improved RR interval-based cardiac arrhythmia classification approach. The Discrete Wavelet Transform (DWT) and median filters were used to remove high-frequency noise and baseline wander from the raw ECG. Next, the processed ECG was segmented after the determination of the QRS region. We extracted the primary feature RR interval and other statistical features from the beats to classify the Normal, Premature Ventricular Contraction (PVC), and Premature Atrial Contraction (PAC). The K-Nearest Neighbour (k-NN), Support Vector Machine (SVM), Decision Tree (DT), Naı¨ve Bayes (NB), and Random Forest (RF) classifier were utilised for classification. Overall performance of SVM with Gaussian kernel achieved Se % = 99.28, Sp % = 99.63, +P % = 99.28, and Acc % = 99.51, which is better than the other classifiers used in this method. The obtained results of the proposed method are significantly better and more accurate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.