Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  prekursor polimerowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Badano adsorpcję dynamiczną trzech barwników: oranżu metylowego (OM), oranżu II (OII) i błękitu metylenowego (BM) z roztworów wodnych na czterech materiałach węglowych. Były to: zredukowany tlenek grafenu (rGO) otrzymany metodą chemiczną, mikroporowaty węgiel otrzymany z prekursora polimerowego – sulfonowanej żywicy styrenowo-diwinylobenzenowej (AC-SDVB), mezoporowaty, uporządkowany materiał węglowy otrzymany metodą miękkiego odwzorowania z żywicy fenolowo-formaldehydowej (OMC-PF) oraz handlowy węgiel aktywny (AC-F400). W dynamicznych badaniach kolumnowych wyznaczono krzywe przebicia tych adsorbentów, a do opisu krzywych przebicia złoża węgla wykorzystano równania Thomasa oraz Yoona-Nelsona. Uzyskane wartości adsorpcji dynamicznej barwników były duże, szczególnie w przypadku mikroporowatego węgla AC-SDVB oraz zredukowanego tlenku grafenu. Stwierdzono, że największą adsorpcją dynamiczną charakteryzował się zredukowany tlenek grafenu, który adsorbował oranż II w ilości 706 mg/g. Wykorzystane równania Thomasa i Yoona-Nelsona dobrze opisywały krzywe przebicia złoża węgla (R2=0,97÷0,99).
EN
Dynamic adsorption of three dyes was studied: methyl orange (OM), orange II (OII) and methylene blue (MB) from aqueous solutions on four carbon materials. These were: reduced graphene oxide (rGO) obtained by the chemical method, microporous carbon prepared from a polymeric precursor – sulfonated styrene-divinyl benzene resin (AC-SDVB), ordered mesoporous carbon material obtained by soft templating from phenol-formaldehyde resin (OMC-PF) and the commercial activated carbon (AC-F400). Breakthrough curves for the above adsorbents were determined in dynamic column experiments and Thomas and Yoon-Nelson equations were used to describe them. Dynamic dye adsorption values were high, especially for AC-SDVB microporous activated carbon and reduced graphene oxide. The highest dynamic adsorption was demonstrated for the reduced graphene oxide, rGO, which adsorbed 706 mg/g of orange II. The equations of Thomas and Yoon-Nelson well described the breakthrough curves for the carbon bed with correlation coefficients R2 = 0,97÷0,99.
EN
Results of studies on the synthesis, characterization and applications of activated carbons from polymeric materials, including polymer wastes, were presented. The major methods of polymer carbonization were described as well as of their activation by different activators such as KOH, CO2 and H2O. Carbons of very good porous structure parameters could be obtained from sulfonated styrene-divinylbenzene resins and polyvinylidene chloride but also from polyethylene terephthalate that represents polymer wastes. Methods for physicochemical characterization of activated carbons obtained from polymers were briefly presented, mainly in relation to their adsorption properties. One of the best activated carbons obtained from sulfonated styrene-divinylbenzene resin had the specific surface area close to 4000 m2/g, total pore volume of about 2.1 cm3/g and could adsorb 40 wt % CO2 per 1 gram of carbon at 0°C and under the pressure of 1 bar, and also 4 wt % H2 per 1 gram of carbon at –196°C, under the pressure of 1 bar. Potential applications of these activated carbons for adsorption of CO2 and H2 as well as CH4, C6H6, NO, CO, O2, SO2 and NH3 were also presented. Activated carbons obtained from polymer wastes could also be used for adsorption of dyes, herbicides, trace metal ions from water as well as adsorption of volatile organic compounds from the air. Attempts at the use of activated carbons for battery electrode and supercapacitor construction are also interesting. Activated carbons from polymeric materials attract a lot of attention due to their high specific surface area and large pore volume combined with large-scale and low-cost production.
PL
Przedstawiono wyniki badań dotyczących wytwarzania, charakteryzacji i zastosowania węgli aktywnych otrzymanych z materiałów polimerowych, w tym z polimerów odpadowych. Opisano najważniejsze metody karbonizacji polimerów, a następnie ich aktywacji za pomocą różnych czynników aktywujących, takich jak KOH, CO2 i H2O. Wykazano, że węgle o bardzo dobrych parametrach struktury porowatej można otrzymać z sulfonowanej żywicy styrenowo-diwinylobenzenowej oraz z poli(chlorku winylidenu), a spośród polimerów odpadowych – z poli(tereftalanu etylenu). Opisano metody badań właściwości fizykochemicznych węgli aktywnych otrzymanych z polimerów, w tym przede wszystkim ich właściwości adsorpcyjnych. Jeden z najlepszych węgli aktywnych otrzymany z sulfonowanej żywicy styrenowo-diwinylobenzenowej miał powierzchnię właściwą bliską 4000 m2/g, całkowitą objętość porów 2,1 cm3/g i był w stanie zaadsorbować 40% wag. CO2 na gram węgla w temperaturze 0°C pod ciśnieniem 1 bar oraz 4% wag. H2 na gram węgla w temperaturze –196°C pod ciśnieniem 1 bar. Przedstawiono możliwości wykorzystania węgli aktywnych otrzymanych z materiałów polimerowych do adsorpcji CO2 i H2, ale również do adsorpcji CH4, C6H6, NO, CO, O2, SO2 i NH3. Węgle otrzymane z polimerów odpadowych mogą być wykorzystane do adsorpcji barwników, herbicydów, jonów metali śladowych z wody oraz lotnych związków organicznych z powietrza. Interesujące są również próby wykorzystywania tych węgli do budowy elektrod baterii i superkondensatorów. Węgle aktywne otrzymywane z materiałów polimerowych cieszą się dużym zainteresowaniem, ponieważ mają bardzo dużą powierzchnię właściwą, dużą objętość porów, a jednocześnie są produkowane w dużych ilościach i mają przystępną cenę.
PL
Przedstawiono wstępne wyniki badań nad kompozytami o osnowie pseudowolastonitowej Ca3(SiO3)3 wzmacnianej włóknami węglowymi, których zastosowaniem będzie chirurgia kostna. Kompozyty otrzymano techniką ciekłej impregnacji włókien węglowych polimerem polisiloksanowym (tzw. preceramem), zawierającym aktywne wypełniacze. Tak otrzymany kompozyt poddano procesowi obróbki termicznej w 1000°C. Wykonano dwa rodzaje kompozytów różniących się sposobem ułożenia włókien; kompozyt o jednokierunkowym ułożeniu włókien (1D) oraz wielokierunkowym (2D/1D/2D). Kompozyty badano za pomocą spektroskopii w zakresie środkowej podczerwieni (FTIR) metodą absorpcyjną. Badania struktury zostały wykonane za pomocą dyfraktometru rentgenowskiego. W celu określenia właściwości mechanicznych - wytrzymałości na zginanie oraz modułu Younga - wykonano testy trójpunktowego zginania. Bioaktywność kompozytów określano w warunkach in vitro poprzez przetrzymywanie materiałów w sztucznym osoczu (SBF) w temperaturze 37°C przez 8 i 16 dni. Po tym okresie prowadzono obserwacje mikroskopowe za pomocą skaningowego mikroskopu elektronowego (SEM) i wykonywano mikroanalizę rentgenowską powierzchni próbek za pomocą mikroanalizatora dyspersji energii promieniowania rentgenowskiego (EDS). Badania za pomocą spektroskopii w podczerwieni próbek po obróbce termicznej w 1000°C wykazały, że jednym ze składników tak otrzymanych kompozytów jest pseudowolastonit Ca3(Si3O9). Analiza rentgenowska wykazała, że produktami obróbki termicznej włókien węglowych i żywicy, zawierającej aktywne wypełniacze, są węgiel i pseudowolastonit Ca3(Si3O9). Średni rozmiar krystalitów pseudowolastonitu, obliczony z równania Scherrera wynosi w przypadku kompozytu 1D 52 +/- 21 nm, natomiast w przypadku kompozytu 2D/1D/2D - 47 +/- 11 nm. Wytrzymałości na zginanie kompozytów są niskie. Kompozyt 1D ma wyższą wytrzymałość na zginanie i mógłby znaleźć zastosowanie w chirurgii twarzowo-szczękowej. Oba kompozyty mają wartość modułu Younga zbliżoną do wartości tego parametru dla kości. Różny sposób ułożenia włókien węglowych ma wpływ na mechanizm pękania kompozytu. Kompozyty wykazały cechy bioaktywne w warunkach in vitro. Zaobserwowano krystalizację apatytu na powierzchniach obu kompozytów, przy czym wcześniej następowała jego krystalizacja w przypadku kompozytu 2D/1D/2D. Badania wykazały, że kontrolowana obróbka termiczna w 1000°C kompozytów wzmacnianych włóknami węglowymi, których osnowy otrzymano z polimeru polisiloksanowego zawierającego aktywne wypełniacze, pozwala na otrzymanie bioaktywnych kompozytów włókno węglowe/pseudowolastonit. Dalsze badanie nad tego typu kompozytami powinny być skoncentrowane na analizie ich właściwości biologicznych oraz na podwyższeniu ich wytrzymałości, co pozwoliłoby na zastosowanie ich jako implanty konstrukcyjne.
EN
In this work pseudowollastonite Ca3(SiO3)3 matrix composites reinforced with carbon fibres, which may be used for bone reconstruction, were investigated. The composites were obtained by new way, namely impregnation of carbon fibres with active fillers-containing polysiloxane polymer (so-called preceram). As received composites were then subjected to controlled heat treatment at 1000°C. Two types of composites differing in fibres spatial arrangement, namely unidirectional (1D) and multidirectional (2D/1D/2D), were prepared. The ceramic composites were analysed by means of Fourier transform infrared spectroscopy (FTIR). Their structure was carried out on XRD diffractometer. Mechanical properties, namely bending strength and Young's modulus of the composite samples were investigated in three point bending test. The bioactivity was determined in in vitro conditions, by immersing of composite samples in simulated body fluid (SBF) during the time of 8 and 16 days. After that test surfaces of composites were studied by scanning electron microscope (SEM) and EDS point analysis. FTIR spectra of composites indicate that after heating process, in both cases, pseudowollastonite i.e. ring silicate of the formula Ca3(Si3O9), is formed. XRD analysis reveals that heat treatment products of carbon fibres and active fillers-containing polysiloxane precursor, contain carbon and pseudowollastonite Ca3(Si3O9). The crystallite sizes of pseudowollastonite, calculated from diffraction peak using the Scherrer's equation, are in case of 1D composite 52 +/- 21 nm and in case of 2D/1D/2D composite - 47 +/- 11 nm. Bending strengths of as received composites are rather low. Higher bending strength represents 1D composite. This composite can be applied as an implant in maxilofacial surgery. Both composites posses Young's modulus values adequate for bone surgery applications. Different spatial arrangement of carbon fibres influences on fracture toughness of composites. Such obtained composites demonstrate bioactivity in in vitro conditions. On 2D/1D/2D composite surface already after 8 days of immersing in SBF calcium phosphate precipitated. The results presented in this work indicate that heat treatment at 1000°C of composites reinforced with carbon fibres, which matrices were obtained from active fillers-containing polysiloxane polymer, is a new method leading to receiving of bioactive carbon fibres/pseudowollastonite composites. Future studies on such composites should be focused on investigation of their biological properties and on further improvement of their bending strength, what could widen their application as constructive implants.
PL
Celem pracy było opracowanie metody wytwarzania bioaktywnego materiału implantacyjnego przeznaczonego dla chirurgii kostnej. Bioceramiczne tworzywo otrzymano drogą obróbki termicznej prekursora krzemoorganicznego, zawierającego aktywne dodatki. Skład fazowy materiału ceramicznego badano za pomocą spektroskopii w podczerwieni (FTIR) oraz dyfrakcji rentgenowskiej (XRD). Mikrostrukturę otrzymanego materiału analizowano za pomocą skaningowej mikroskopii elektronowej (SEM) połączonej z mikroanalizą rentgenowską (EDS). Przeprowadzono test bioaktywności w warunkach "in vitro" poprzez przetrzymywanie materiałów ceramicznych w SBF-ie. Badania wykazały, że obróbka termiczna prekursora krzemoorganicznego zawierającego aktywne wypełniacze prowadzić może do otrzymania tworzywa ceramicznego zawierającego wolastonit, charakteryzującego się bioaktywnością w warunkach "in vitro".
EN
The aim of this work was to elaborate the preparation method of bioactive implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon precursor. The phase composition of ceramic material was analysed by means of infrared spectroscopy (FTIR) and XRD analysis (XRD). The microstructure of the obtained material was studied by scanning electron microscopy (SEM) with EDS point analysis. The bioactivity test in "in vitro"conditions was determined by immersing of ceramic samples in SBF. It was found that thermal treatment of active filters-containing organosilicon precursor leads to formation of wollastonite-containing ceramic material. The ceramic material demonstrates bioactivity in "in vitro" conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.