Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  prawa sterowania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy zaprezentowano modelowanie dynamiki pocisku rakietowego, stabilizowanego przy użyciu giroskopu, samonaprowadzającego się na manewrujący cel naziemny. Model matematyczny opracowany został przy zastosowaniu równań Boltzmanna–Hamela dla układów mechanicznych o więzach nieholonomicznych. Pokazano, jak stosując ogólny model matematyczny sterowanego obiektu latającego, wprowadzając prawa sterowania jako więzy nieholonomiczne oraz stabilizację giroskopową, można sterować automatycznie badanym obiektem. Wprowadzone prawa sterowania stanowią związki kinematyczne uchybów, to znaczy różnic między parametrami zadanymi i realizowanymi lotu pocisku rakietowego. Otrzymane prawa sterowania potraktowano jako więzy nieholonomiczne ograniczające ruch pocisku tak, aby spełniał on żądany manewr sterowany. Związki kinematyczne i kryteria naprowadzania stanowią koordynację lotu sterowanej automatycznie rakiety, której ruch został powiązany z linią obserwacji manewrującego przestrzennie celu, wyznaczoną przez oś sterowanego giroskopu. Poprawność opracowanego modelu matematycznego potwierdziła symulacja numeryczna przeprowadzona dla pocisku klasy „Maverick” wyposażonego w giroskop będący elementem wykonawczym skanowania powierzchni ziemi i śledzenia wykrytego na niej celu. Analizie poddana została zarówno dynamika giroskopu, jak i pocisku podczas procesu śledzenia wykrytego celu. Wyniki przedstawione zostały w postaci graficznej.
EN
The paper presents the modelling of the dynamics of a self-guided missile steered using a gyroscope. In such kinds of missiles, attacking the targets detected by them, the main element is a self-guiding head, which is operated by a steered gyroscope. A mathematical model was precluded using the Boltzmann–Hamel equations for mechanical systems with non-holonomic constraints. A relatively simple method for automatic control has been presented based on introducing the control laws and gyroscope into a general model of a flying object. These control laws have the form of kinematics relations between the real and preset flight parameters, respectively. The resulting control laws are considered as non-holonomic constraints of the missile motion ensuring that it executes the specified controlled manoeuvre. Kinematical relations combined with homing criteria represent the coupling between the missile flight and 3D motion of a manoeuvring target. Correctness of the developed mathematical model was confirmed by digital simulation conducted for a Maverick missile equipped with a gyroscope being an executive element of the system scanning the earth’s surface and following the detected target. Both the dynamics of the gyroscope and the missile during the process of scanning and following the detected target were the subject to digital analysis. The results were presented in graphic form.
EN
This paper presents the results of Pilot Assisting Module research performed on two light aircraft flight simulators developed in parallel at Brno University of Technology, Czech Republic, and Rzeszow University of Technology, Poland. The first simulator was designed as an open platform for the verification and validation of the advanced pilot/aircraft interface systems and inherited its appearance from the cockpit section of the Evektor SportStar. The second flight simulator, the XM-15, has been built around the cockpit of a unique agriculture jet Belfegor. It introduced a system architecture that supports scientific simulations of various aircraft types and configurations, making it suitable for conceptual testing of Pilot Assisting Module. The XM-15 was initially designed to support research on advanced flight control systems, but due to its continuing modernization it evolved into a hardware-in-the-loop test-bed for electromechanical actuators and autopilot CAN based controller blocks. Pilot-in-the-loop experiments of proposed Pilot Assisting Module revealed favorable operational scenarios, under which the proposed system reduces the cockpit workload during single pilot operations.
PL
W ostatnich latach małe samoloty ogólnego przeznaczenia zyskują na coraz większej popularności jako środki transportu osobowego. Szybki postęp w dziedzinie lekkich i ultralekkich konstrukcji lotniczych prowadzi m.in. do redukcji kosztów ich wytwarzania oraz eksploatacji. Czynniki te, w połączeniu z dynamicznym rozwojem sieci lokalnych portów lotniczych i lądowisk sprawiają, że małe lotnictwo staje się dostępne nie tylko dla wąskiej grupy entuzjastów, lecz również dla osób pragnących wykorzystać je jako środek transportu alternatywny dla kolei, czy też pojazdów samochodowych. Niestety, małe samoloty o napędzie tłokowym postrzegane są z reguły jako niezbyt wygodny środek lokomocji, szczególnie w stosunku do samolotów liniowych lub odrzutowych samolotów dyspozycyjnych. Główny problem związany jest jednak z wykonywaniem operacji lotniczych w załodze jednoosobowej, w dodatku przez pilotów amatorów. Zastosowanie pośredniego układu sterowania samolotem (ang. fly-by-wire) może w znacznej mierze ułatwić proces pilotowania i zredukować niektóre błędy powodowane czynnikiem ludzkim. Wprowadzenie złożonych systemów sterowania do prostej konstrukcji lotniczej prowadzi jednak do wielu problemów, zarówno natury technicznej (problem niezawodności złożonego systemu elektromechanicznego) jak i ekonomicznej. Mając na uwadze zalety oraz wady układów sterowania, zarówno klasycznych jak i klasy fly-by-X, autorzy pracy zdecydowali się na realizację systemu sterowania, który z jednej strony ułatwi pracę pilota, a z drugiej strony nie będzie wymagał rezygnacji z mechanicznego połączenia sterownicy/orczyków i płaszczyzn sterowych. Proponowane rozwiązanie bazuje na zmodyfikowanym układzie autopilota, który aktywnie wspiera pilota m.in. w sytuacjach stresowych związanych z utratą orientacji, zagubieniem i niektórymi usterkami urządzeń pokładowych. Zastosowana koncepcja algorytmów sterowania bazująca na metodzie Total-X umożliwia również redukcję emisji hałasu i zużycia paliwa. Bezpośrednie przejście z etapu testów laboratoryjnych do prób w locie jest ryzykowne i kosztowne. Z tego też względu autorzy pracy postanowili wykonać testy na symulatorze lotu, włączając pilota w pętlę sterowania. Modyfikacja dostępnego, profesjonalnego symulatora lotu nie była możliwa ze względów formalnych (wyłączenie urządzenia z procesu szkolenia i czasowa utrata certyfikacji). Możliwym i znacznie korzystniejszym rozwiązaniem okazała się budowa eksperymentalnych symulatorów lotu, zorientowanych na klasę samolotów lekkich i ultralekkich. W pracy przedstawiono dwa eksperymentalne symulatory lotu, które powstały w Politechnice Rzeszowskiej i Politechnice Brneńskiej. Symulatory powstały w kooperacji, aczkolwiek różnią się od siebie zasadniczo. Pierwsze z urządzeń (zaprojektowane i zbudowane w Politechnice Brneńskiej, Wydział Technologii Informacyjnych) bazuje na kokpicie popularnego samolotu lekkiego Evektor SportStar. Symulator zaprojektowany i wykonany w Politechnice Rzeszowskiej na Wydziale Budowy Maszyn i Lotnictwa wykorzystuje kabinę samolotu M-15. Symulatory posiadają modułową konstrukcję i umożliwiają testowanie m.in. elektromechanicznych układów wykonawczych, paneli kontrolnych i sterownic wyposażonych w standardowe interfejsy komunikacyjne.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.