Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  powybuchowa fala uderzeniowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Korzystając z założeń sekwencyjnego modelu natychmiastowej detonacji, sformułowano graniczne zagadnienie początkowo-brzegowe wybuchu kulistego ładunku materiału wybuchowego (MW) w powietrzu atmosferycznym. Równania ruchu całkowano metodą rozpadu dowolnych nieciągłości Godunowa z wydzieleniem frontu uderzeniowej fali podmuchu oraz granicy produktów detonacji. Wyniki obliczeń numerycznych dla sekwencyjnego modelu natychmiastowej detonacji porównano z podobnymi obliczeniami przy wykorzystaniu dokładnego opisu procesu detonacji MW. Ustalono, że ze względu na maksymalne wartości ciśnień na froncie fali podmuchu oraz wartości otrzymywanych impulsów nadciśnienia, sekwencyjny model natychmiastowej detonacji można stosować do opisu tej fali na względnych odległościach ξD > ξkr (ξkr ≈ 6 dla badanego ładunku trotylu). Ogólną prawidłowością są mniejsze wartości maksymalnych ciśnień na froncie fali podmuchu dla modelu natychmiastowej detonacji w porównaniu z odpowiednimi wartościami dla zagadnienia pełnego (ρDN < ρD) na odległościach ξD < ξD1 (ξD1 ≈ 7,5 dla trotylu), natomiast w zakresie ξ D > ξD1 spełniona jest relacja ρDN > ρD z tendencją do zanikania różnic wartości ze wzrostem odległości od centrum wybuchu. Stwierdzono, że fala podmuchu dla modelu detonacji natychmiastowej jest opóźniona (pojawia się później w wybranej odległości od centrum wybuchu) w zakresie ξD < ξD2 (ξD2 ≈ 17 dla trotylu) i przyspieszona (pojawia się wcześniej) dla ξD > ξD2.
EN
On the strength of assumptions of the sequential type of an instantaneous detonation, the initial boundary-value problem has been formulated for the spherical charge explosion in an atmosphere. The motion equations have been solved by means of a numerical scheme of the Godunov’s method of disintegration an arbitrary discontinuity with separating the blast wave front and the detonation products boundary. The results of numerical calculations for the sequential type of an instantaneous detonation have been compared with similar computations when taking advantage of the rigorous description of a detonation process. It has been ascertained, that considering the maximum pressure values in the blast wave front, as well as obtained values of the overpressure pulses, the sequential type of an instantaneous detonation may be applied to describe this wave to the relative distances of ξD > ξkr (ξkr ≈ 6 for the TNT charge examined). The general principle are less values of maximum pressures on comparison with appropriate values for the complete problem (ρDN < ρD) at the distances ξD < ξD1 (ξD1 ≈ 7.5 for TNT), whereas in the range ξD > ξD1 the inequality ρDN > ρD is satisfied with a tendency to decay the values of differences with increasing the distance from the explosion centre. It has been stated, that the blast wave, when applying the sequential type of an instantaneous detonation, is behind time (comes later at a settled distance from the explosion centre) in the range ξD < ξD2 (ξD2 ≈ 17 for TNT) and it is accelerated (appears sooner) for ξ D > ξD2.
EN
Formulation of the propagation problem of the detonation wave in an explosive charge has been presented, and the solution method of the equations of motion has been worked out. The Jones, Wilkins and Lee equation of state has been used for detonation products. On the strength of a self-similarity of the problem, the equations of motion have been reduced to the set of ordinary differential equations that have been solved using the Runge-Kutta method of 4th order. Spatial distributions of parameters of detonation products have been obtained for arbitrary time instant of the process till the moment, at which the detonation front reaches the charge boundary that marks the end of the combustion process. It has been formulated the problem of a dispersion of detonation products into the surrounding air with regard to its climatic changes. In depicting properties of the air disturbed by the blast wave propagating throughout, it has been adapted the Brode calorific equation of state with eleven material constants, whereas the damp air has been treated as an mixture of ideal gases. The integral equations of motion have been solved by means of numeric scheme of the Godunov's method of disintegration the arbitrary discontinuity with assigning the primary blast wave front and the detonation products boundary. The other strong discontinuities, appearing in the flow, have been smoothed out by the dissipative numerical scheme. An influence of parameters of an atmospheric air has been examined, such as pressure p0 temperature T0 and humidity, on the blast wave characteristics. It has been found, that increasing the temperature of the undisturbed air results in decreasing pressure on the primary blast wave front, while growing the atmospheric pressure means growing pressure on the wave front too. The influence of humidity extends with increasing temperature and decreasing pressure. Pressures on the blast wave front in a damp air are always less in magnitude in comparison with values attained in a dry air. It has been ascertained, that the influence of all of three atmospheric parameters decreases with growing the propagating blast wave radius. The extreme influence on the pressure values in a blast wave creates the climatic variations in temperature, the least of all - the humidity variations. In many cases the influence of the last parameter may be ignored. Comprehensive properties of the dispersion of detonation products have been investigated, taking into consideration the variations of the atmospheric parameters. It has been determined, that the maximal range of the detonation products, estimated on the ground of discovering the dry air at the conventional conditions, must be extended to 17 values of a charge radius.
PL
Sformułowano zagadnienie oraz opracowano metodę całkowania równań ruchu problemu rozprzestrzeniania się fali detonacyjnej w ładunku materiału wybuchowego (MW). Do opisu produktów detonacji zastosowano równanie stanu Jonesa, Wilkinsa i Lee'go. Korzystając z samopodobieństwa zagadnienia, równania ruchu sprowadzono do odpowiedniego układu równań różniczkowych zwyczajnych, który całkowano metodą Rungego-Kutty czwartego rzędu. Otrzymano przestrzenne rozkłady parametrów w produktach detonacji w dowolnym momencie trwania tego procesu aż do chwili dotarcia fali detonacyjnej do granicy ładunku, kończącej proces spalania. Sformułowano zagadnienie rozlotu produktów detonacji w otaczające ładunek powietrze atmosferyczne z uwzględnieniem jego zmian klimatycznych. Do opisu właściwości powietrza, zaburzonego przez rozchodzącą się w nim falę podmuchu, zastosowano kaloryczne równanie stanu Brode 'a z jedenastoma stałymi materiałowymi, natomiast wilgotne powietrze atmosferyczne traktowano jako mieszaninę gazów doskonałych. Całkowe równania ruchu rozwiązywano za pomocą schematu numerycznego metody rozpadu dowolnych nieciągłości Godunowa z wydzieleniem frontu pierwotnej fali podmuchu oraz granicy rozdziału produktów detonacji. Pozostałe silne nieciągłości, pojawiające się w trakcie ewolucji rozwiązania, ulegały naturalnemu rozmyciu przez dysypatywny schemat różnicowy Godunowa. Zbadano wpływ parametrów powietrza atmosferycznego, takich jak ciśnienie p0 temperatura T0 i wilgotność na charakterystyki powybuchowych fal uderzeniowych. Ustalono, że wzrost temperatury niezaburzonego powietrza powoduje spadek ciśnienia na froncie pierwotnej fali wybuchu, natomiast wzrost ciśnienia atmosferycznego oznacza również wzrost ciśnienia na powierzchni tej fali. Wpływ wilgotności rośnie ze wzrostem temperatury i spadkiem ciśnienia. W wilgotnym powietrzu ciśnienia na powierzchni fali wybuchu są zawsze mniejsze od wartości uzyskiwanych w powietrzu suchym. Ustalono, że wpływ wszystkich trzech parametrów atmosfery maleje ze wzrostem promienia rozchodzącej się fali wybuchu. Największy wpływ na wartości ciśnień w fali powybuchowej wywierają klimatyczne zmiany temperatury, najmniejsze - zmiany wilgotności. Wpływ tego czynnika można w wielu przypadkach pominąć i ograniczyć się do badania suchego powietrza. Zbadano ogólne własności procesu rozlotu produktów detonacji z uwzględnieniem zmian parametrów atmosfery. Ustalono, że maksymalny zasięg produktów detonacji, szacowany na podstawie badań suchego powietrza i atmosfery standardowej, należy przedłużyć do ok. siedemnastu promieni ładunku.
PL
W pracy zamieszczono rezultaty badań eksperymentalnych gąsienicowego wozu bojowego poddanego obciążeniu ciśnieniem fali uderzeniowej wygenerowanej wybuchem niekontaktowej miny przeciwdennej.
EN
The paper includes results of experimental investigations of combat vehicle carrying structure loaded by shock wave generated by influence of mine explosion.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.