Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 187

Liczba wyników na stronie
first rewind previous Strona / 10 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  powietrze na stanowiskach pracy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 10 next fast forward last
PL
1,4-Dioksan to lotna ciecz o słabym zapachu, która dobrze rozpuszcza się w wodzie i większości rozpuszczalników organicznych. Jako łatwopalna ciecz stwarza zagrożenie pożarowe. 1,4-Dioksan jest niestabilny w podwyższonej temperaturze i ciśnieniu i może tworzyć mieszaniny wybuchowe. Substancja jest stosowana głównie jako rozpuszczalnik w produkcji innych substancji chemicznych, jako rozpuszczalnik do farb drukarskich, powłok i klejów oraz jako odczynnik laboratoryjny. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) 1,4-dioksan został sklasyfikowany jako substancja rakotwórcza, łatwopalna, drażniąca na oczy oraz drażniąca na układ oddechowy. W artykule przedstawiono metodę oznaczania 1,4-dioksanu w powietrzu na stanowiskach pracy, znowelizowaną ze względu na proponowaną zmianę wartości najwyższego dopuszczalnego stężenia (NDS) dla tej substancji. Metoda polega na adsorpcji 1,4-dioksanu na węglu aktywnym, desorpcji mieszaniną propan-2-olu i disiarczku węgla oraz analizie chromatograficznej (GC-FID) otrzymanego roztworu. Metoda umożliwia oznaczanie 1,4-dioksanu w zakresie stężeń 2,2 ÷ 44 mg/m3 (gdy NDS 22 mg/m3) lub 0,73 ÷ 14,6 mg/m3 (gdy NDS 7,3 mg/m3), tj. 1/10 ÷ 2 proponowanych wartości najwyższego dopuszczalnego stężenia. Metoda została poddana walidacji zgodnie z normą PN-EN 482. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,4-Dioxane is a volatile liquid with a weak odor that dissolves well in water and most organic solvents. As a flammable liquid it poses a fire hazard. 1,4-Dioxane is unstable at increased temperature and pressure and can form explosive mixtures. It is mainly used as a solvent in the production of other chemicals, as a solvent for printing inks, coatings and adhesives, and as a laboratory reagent. According to the Regulation of the European Parliament and the Council (WE 1272/2008), 1,4-dioxane is classified as a carcinogen, flammable, eye and respiratory irritant. This article presents a method for the determination of 1,4-dioxane in workplace air, revised due to a proposed change in the maximum allowable concentration (MAC) value for this substance. The method involves adsorption of 1,4-dioxane on activated carbon, desorption with a mixture of propan-2-ol and carbon disulfide, and chromatographic analysis (GC-FID) of the resulting solution. The method allows for the determination of 1,4-dioxane in the concentration range of 2.2 to 44 mg/m3 (MAC 22 mg/m3 ) or 0.73 to 14.6 mg/m3 (MAC 7.3 mg/m3 ), i.e. 1/10 to 2 of the proposed value of the maximum allowable concentration. The method has been validated in accordance with PN-EN 482. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
2
Content available remote Oznaczanie antymonu i jego związków w powietrzu na stanowiskach pracy
PL
Antymon jest stosowany wraz z innymi metalami jako dodatek do stopów czcionkowych i łożyskowych. Antymon w formie metalicznej nie jest zaklasyfikowany jako substancja zagrażająca zdrowiu, natomiast jego sole zostały tak sklasyfikowane. Niektóre związki antymonu zostały sklasyfikowane jako substancje rakotwórcze. Obowiązująca wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu na stanowiskach pracy wynosi 0,5 mg/m3 (Rozporządzenie MRPiPS 2018). Celem badań było opracowanie metody oznaczania antymonu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu antymonu i jego związków zawartych w powietrzu na filtr MCE, mineralizacji filtra w wodzie królewskiej w temperaturze 150°C oraz oznaczeniu zawartości antymonu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej (AAS) z atomizacją w płomieniu. Metoda oznaczania antymonu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Antimony is used as an additive in font and bearing alloys along with other metals. Antimony in metallic form is not classified as a health hazard, while its salts have been so classified. Some antimony compounds have been classified as carcinogens. The applicable value of the maximum allowable concentration (MAC) in air at workplaces is 0.5 mg/m3 (MRPiPS ordinance, 2018). The purpose of this study was to develop a method for the determination of antimony for occupational exposure assessment in the range of 1/10–2 of the proposed MAC values. The method consists of collecting antimony and its airborne compounds from an MCE filter, mineralizing the filter in aqua regia at 150°C, then determining the antimony content in the sample using atomic absorption spectrometry (AAS) with flame atomization. The method for the determination of antimony is presented in the form of an analytical procedure, which is included in the appendix. The scope of the article includes health and environmental health and safety issues that are the subject of research in health sciences and environmental engineering.
PL
1,2-Dihydroksybenzen (DHB) to bezbarwna substancja krystaliczna o charakterystycznym zapachu, która zmienia kolor na brązowy pod wpływem powietrza i światła. 1,2-Dihydroksybenzen stosuje się w przemyśle jako przeciwutleniacz. Narażenie pracowników na 1,2-dihydroksybenzen może wystąpić podczas jego produkcji, przetwarzania i stosowania substancji chemicznej, przy czym główne drogi narażenia pracowników na substancję to inhalacyjna, dermalna i przez układ pokarmowy. Celem badań było opracowanie metody oznaczania 1,2-dihydroksybenzenu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS (10 mg/m3). Metoda polega na pobraniu obecnego w powietrzu 1,2-dihydroksybenzenu przez układ złożony z filtra włókna szklanego i rurki pochłaniającej zawierającej dwie warstwy sorbentu XAD-7, ekstrakcji roztworem N,N-dimetyloformamidu w metanolu oraz analizie chromatograficznej otrzymanego roztworu. Metoda umożliwia oznaczanie 1,2-dihydroksybenzenu w powietrzu w zakresie stężeń 1,0 ÷ 20,0 mg/m3. Metoda została poddana walidacji zgodnie z normą PN-EN 482. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,2-Dihydroxybenzene is a colorless crystalline substance with a characteristic odor that turns brown when exposed to air and light. It is used in industry as an antioxidant. Worker exposure to 1,2-dihydroxybenzene can occur during the production, processing and use of the chemical, through inhalation, dermal and gastrointestinal routes. The aim of the study was to develop a method for the determination of 1,2-dihydroxybenzene to assess occupational exposure within 1/10-2 of the proposed MAC value (10 mg/m3 ). The method involves the collection of 1,2-dihydroxybenzene in a system consisting of a glass fiber filter and a tube containing two layers of XAD-7 sorbent, extraction with a solution of N,N-dimethylformamide in methanol, and chromatographic analysis of the resulting solution. The method allows the determination of 1,2-dihydroxybenzene in air in the concentration range from 1.0 to 20.0 mg/m3. The method has been validated in accordance with PN-EN 482. The scope of the article includes health and environmental health and safety issues being the subject of research in health sciences and environmental engineering.
PL
W Polsce dotychczas nie było konieczności oznaczania stężenia węgla elementarnego (EC) w celu oceny narażenia inhalacyjnego pracowników, ponieważ polska wartość NDS jest ustalona dla frakcji respirabilnej spalin silników Diesla. Nie ma również żadnych danych dotyczących poziomu stężeń EC w powietrzu stanowisk pracy, a narażenie na ten niebezpieczny dla zdrowia czynnik dotyczy bardzo dużej populacji pracowników zatrudnionych m.in. w podziemnych wyrobiskach górniczych, jak również strażaków, kierowców tirów, autobusów, a także pracowników stacji obsługi samochodów (Szymańska i in. 2019). Wprowadzenie do Dyrektywy Parlamentu Europejskiego i Rady (UE) 2019/130 z dnia 16 stycznia 2019 r. wartości BOELV 0,05 mg/m³ dla spalin silników wysokoprężnych Diesla w środowisku pracy, mierzonych jako węgiel elementarny, wymaga dostosowania przepisów krajowych do tej wartości i opracowania metody oznaczania węgla elementarnego. Celem prac badawczych było opracowanie metody oznaczania węgla elementarnego w powietrzu na stanowiskach pracy na poziomie 0,005 mg/m³ . W wyniku badań opracowano metodę oznaczania węgla elementarnego w powietrzu na stanowiskach pracy z zastosowaniem termo-optycznego analizatora z detektorem płomieniowo-jonizacyjnym. Metoda polega na przepuszczeniu badanego powietrza zawierającego spaliny silnika Diesla przez filtr kwarcowy umieszczony w kasecie i analizie w odpowiednim programie temperaturowym. Uzyskano oznaczalność EC 0,0041 mg/m³ . Całkowita precyzja badania wynosiła 5,3%, względna niepewność całkowita 11,6%, a niepewność rozszerzona 23,2%. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
In Poland, until now it has not been necessary to determine the elemental carbon (EC) concentrations because Polish NDS values are set for a respirable fraction of diesel exhausts. No data on the level of EC concentrations in workplace air are available although the exposure to this hazardous factor concerns a large population of workers. The exposure concerns people working in underground mines and tunneling, firefighters, lorry and bus drivers, and car service station workers. The introduction of 0.05 mg/m³ BOELV value for diesel exhaust gases in working environment, measured as elemental carbon into the Directive 2019/130 of the European Parliament, requires the adjustment of the national legislation. The aim of the study was to develop a method for determining EC in workplace air at the level of 0.005 mg/m³ . As a result, a method for determination EC in workplace air using a thermo-optical analyzer with a flame ionization detector was developed. The method consists in passing the tested air containing diesel exhaust gases through a quartz filter placed in a cassette and its analysis in an appropriate temperature program. An EC determination of 0.0041 mg/m³ was obtained. The total accuracy of the method was 5.3%, a relative total uncertainty was 11.6% and an expanded uncertainty was 23.2%. This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kwas nitrylotrioctowy (NTA), podobnie jak jego mono-, di- oraz trisodowe sole, w temperaturze pokojowej stanowi bezwonne, białe, krystaliczne ciało stałe. NTA w przeciwieństwie do swoich soli sodowych bardzo słabo rozpuszcza się w wodzie i jest nierozpuszczalny w większości rozpuszczalników organicznych. Stosuje się go jako środek zapobiegający osadzaniu kamienia kotłowego, jako środek kompleksujący jony metali podczas barwienia tkanin lub jako środek zapobiegający rozkładowi nadtlenków i wodorosiarczków w przemyśle papierniczym, jak również jako składnik detergentów i płynów czyszczących. NTA i jego sole sodowe zostały uznane za substancje potencjalnie rakotwórcze. Celem badań było opracowanie i walidacja metody oznaczania NTA i jego soli w środowisku pracy. Opracowana metoda oznaczania NTA i jego soli polega na zatrzymaniu pyłów lub aerozolu na filtrach z włókna szklanego, ekstrakcji badanych związków NaOH o stężeniu 0,2 mol/l i oznaczeniu NTA techniką wysokosprawnej chromatografii cieczowej z detekcją spektrofotometryczną (HPLC-UV-VIS). Ta metoda jest liniowa w zakresie stężeń 0,0135 ÷ 0,54 μg/ml, co odpowiada zakresowi 0,15 ÷ 6,0 mg/m3 dla próbki powietrza o objętości 180 l. Opracowana metoda analityczna umożliwia oznaczanie NTA i jego soli w powietrzu na stanowiskach pracy w obecności innych związków chelatujących, charakteryzuje się dobrą precyzją i dokładnością oraz spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Metoda została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia dotyczące zdrowia oraz bezpieczeństwa i higieny środowiska pracy, będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Nitrilotriacetic acid and its mono-, di- and trisodium salts at room temperature, are white crystalline odorless solids. NTA is poorly (in opposite to its sodium salts) soluble in water. It is soluble with ethanol, however insoluble in most of organic solvents. NTA is used as an anti-limescale agent, as a chelating agent in fabric dyeing and agent preventing of decomposition of peroxides and hydrosulphides in paper processing. It is also used as a component of some detergents and cleaning fluids. NTA and its sodium salts are suspected to be carcinogenic to humans. The aim of the work was to develop and validate method of determination of NTA and its salts in workplace air. The developed method is based on an arrest of dusts or aerosols of these substances on glass fiber filters, extraction of the filters with a 0.2 M NaOH and analysis of the resulted solution by means of HPLC-UV-VIS technique. The developed method is linear in the concentration range of 0.0135-0.54 µg/ml, which corresponds to the range of 0.15–6.0 mg/m3 for a 180-L air sample. The analytical method described in this paper enables determination of NTA and its salts in air at workplaces in the presence of other chelating agents. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of NTA at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
6
Content available remote Kwas benzoesowy. Metoda oznaczania w powietrzu na stanowiskach pracy
PL
Kwas benzoesowy jest organicznym związkiem należącym do grupy aromatycznych kwasów karboksylowych. Wykorzystuje się go głównie do produkcji fenolu, kaprolaktamu i soli benzoesowych, jako konserwant spożywczy i farmaceutyczny oraz przy produkcji herbicydów, środków owadobójczych i bakteriobójczych. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) kwas benzoesowy został sklasyfikowany jako substancja działająca szkodliwie na płuca, drażniąca skórę i powodująca uszkodzenie oczu. Celem badań było opracowanie metody oznaczania kwasu benzoesowego do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu frakcji wdychalnej kwasu benzoesowego zawartej w powietrzu na filtr z włókna szklanego pokryty węglanem(IV) sodu, desorpcji roztworem metanolu w wodzie, a następnie oznaczeniu zawartości kwasu benzoesowego w próbce z zastosowaniem chromatografii cieczowej z detektorem diodowym (UHPLC-DAD). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie kwasu benzoesowego w powietrzu w stężeniach 0,05 ÷ 1 mg/m3. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Benzoic acid is an organic compound that belongs to the group of aromatic carboxylic acids. It is mainly used in the production of phenol, caprolactam and benzoic salts, as a food and pharmaceutical preservative, and in the production of herbicides, insecticides and bactericides. According to the Regulation of the European Parliament and of the Council (WE 1272/2008), benzoic acid is classified as a substance that is harmful to the lungs, irritates the skin and causes eye damage. The aim of the study was to develop a method for the determination of benzoic acid for the assessment of occupational exposure within 1/10–2 of the proposed MAC value. The method involves taking the inhalable fraction of airborne benzoic acid onto a glass fiber filter coated with sodium carbonate(IV), desorption with a solution of methanol in water and then determining the benzoic acid content of the sample by the use of liquid chromatography with diode array detector (UHPLC-DAD). Validation requirements presented in European standard PN-EN 482 were fulfilled during the tests. The method enables determination of benzoic acid in air at concentrations of 0.05 to 1 mg/m3 . The method for determining benzoic acid has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Izopren to wysoce lotna ciecz o nieprzyjemnym i drażniącym zapachu, która w powietrzu łatwo ulega polimeryzacji z wydzieleniem energii. Izopren jest stosowany w przemyśle głównie do produkcji opon, dętek, węży ogrodowych, uszczelek oraz odzieży. Pozyskuje się go przemysłowo jako produkt uboczny krakingu termicznego benzyny i ropy lub jako produkt uboczny produkcji etylenu. Jest wytwarzany przez rośliny, w których jest wykorzystywany podczas produkcji terpenoidów, karotenoidów oraz barwników. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) izopren został sklasyfikowany jako substancja rakotwórcza, mutagenna oraz skrajnie łatwopalna. Celem badań było opracowanie metody oznaczania izoprenu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu izoprenu zawartego w powietrzu na rurkę wypełnioną sorbentem ORBO 351, desorpcji disiarczkiem węgla, a następnie oznaczeniu zawartości izoprenu w próbce z zastosowaniem chromatografii gazowej z detektorem płomieniowo-jonizacyjnym (GC-FID). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie w powietrzu izoprenu o stężeniach 0,8 ÷ 16 mg/m³ . Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Isoprene is a highly volatile liquid with an unpleasant and irritating odor, which is easily polymerized in the air with the release of energy. Isoprene is used in industry mainly for the production of tires, inner tubes, garden hoses, gaskets and clothing. It is extracted industrially as a byproduct of the thermal cracking of gasoline and oil, or as a byproduct of ethylene production. It can also be produced during condensation of isobutene with formaldehyde or by catalytic dehydrogenation of isopentane. It is made by plants, where it is used during the production of tarpenoids, carotenoids and dyes. According to the Regulation of the European Parliament and of the Council (WE 1272/2008), isoprene has been classified as a carcinogen, mutagen and extremely flammable substance. The aim of the study was to develop a method for determining isoprene to assess occupational exposure within 1/10−2 of the proposed MAC value. The method involves collecting airborne isoprene onto a tube filled with ORBO 351 sorbent, desorbing it in carbon disulfide, and then determining the isoprene content of the sample using gas chromatography with a flame ionization detector (GC-FID). Validation requirements presented in European standard PN-EN 482 were fulfilled during the tests. The method enables determination of isoprene in air at concentrations of 0,8−16 mg/m³ . The method for determining isoprene has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
8
Content available remote Ftalan bis(2-etyloheksylu). Metoda oznaczania w powietrzu na stanowiskach pracy
PL
Ftalan bis(2-etyloheksylu), znany jako DEHP, to substancja działająca szkodliwie na rozrodczość kategorii 1B, umieszczona na liście substancji zidentyfikowanych jako zaburzające gospodarkę hormonalną. Celem przeprowadzonych prac badawczych było opracowanie znowelizowanej metody oznaczania ftalanu bis(2-etyloheksylu), która umożliwi oznaczanie jego stężeń na poziomie 0,08 mg/m3. Metoda polega na zatrzymaniu zawartego w powietrzu ftalanu bis(2-etyloheksylu) na próbnik składający się z rurki szklanej z sorbentem XAD-2 i filtra z włókna szklanego, ekstrakcji mieszaniną aceton/dichlorometan i analizie chromatograficznej otrzymanego roztworu. Badania wykonano z zastosowaniem chromatografii gazowej ze spektrometrią mas (kolumna RTX-5Sil MS). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Znowelizowana metoda umożliwia oznaczanie związku w powietrzu środowiska pracy w zakresie stężeń 0,08 ÷ 1,6 mg/m3. Metoda oznaczania DEHP została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Bis(2-ethylhexyl) phthalate, also known as DEHP, is a reproductive toxicant of hazard category 1B included in the list of substances identified as endocrine disruptors. The aim of the research work was to develop an updated method for the determination of DEHP that will enable its concentrations to be determined at 0.08 mg/m3. The method involves trapping the aerosol of bis(2-ethylhexyl) phthalate contained in the air onto a sampler - a glass tube with XAD-2 sorbent and a glass fiber filter, extraction with an acetone/dichloromethane mixture and chromatographic analysis of the resulting solution. The study was performed with the use of gas chromatography with a mass spectrometer (RTX5Sil MS column). Validation of the method was carried out in accordance with the requirements of the European standard PN-EN 482. The updated method allows the determination of the compound in the air of the working environment in the concentration range from 0.08 mg/m3 to 1.6 mg/m3 . The method for the determination of DEHP is presented in the form of an analytical procedure, which is included in Appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Fosforan trifenylu (FTF) jest bezbarwnym ciałem stałym o delikatnym zapachu przypominającym fenol. Związek jest stosowany jako środek zmniejszający palność przy produkcji elementów elektrycznych i samochodowych oraz jako niepalny plastyfikator używany do produkcji kliszy fotograficznej. Ponadto jest składnikiem płynów hydraulicznych i olejów smarowych, pracujących w warunkach ekstremalnych ciśnień. Fosforan trifenylu jest obecnie stosowany jako zamiennik bisfenolu A w opakowaniach z tworzyw sztucznych i innych, znalazł również zastosowanie w kosmetykach. Celem prac badawczych było opracowanie i walidacja metody oznaczania fosforanu trifenylu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania fosforanu trifenylu polega na adsorpcji par tej substancji na żywicy XAD-2, desorpcji przy użyciu mieszaniny dichlorometan−acetonitryl (1: 1) i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w niepolarną kolumnę kapilarną HP-5MS (o długości 30 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,25 µm). Wskazania spektrometru mas pracującego w trybie SIM w funkcji stężenia fosforanu trifenylu w badanym zakresie stężeń (10,0 ÷ 200,0 µg/ml) mają charakter liniowy. Opracowana metoda analityczna umożliwia oznaczanie fosforanu trifenylu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością, spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania fosforanu trifenylu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Triphenyl phosphate (TPP) is a colorless solid with a slight phenol-like odor. It is used as a flame retardant in the production of electrical and automotive components and as a non-flammable plasticizer used in the production of photographic film. In addition, it is a component of hydraulic fluids and lubricating oils operating under extreme pressure. TPP is currently used as a substitute for Bisphenol A in plastic and other packaging, and has also been used in cosmetics. The aim of the research was to develop and validate method of determination of triphenyl phosphate in workplace air. The developed method of TPP determination consists in adsorption of the vapors of this substance on XAD-2 resin, extraction with a dichloromethane-acetonitrile mixture and chromatographic analysis of the solution obtained in this way. The study was performed by gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a non-polar HP-5MS capillary column (length 30 m, diameter 0.25 mm and the film thickness of the stationary phase 0.25 µm). Indications of the mass spectrometer operating in SIM mode as a function of TPP concentration in the tested concentration range (10.0–200.0 µg/ml) are linear. The analytical method described in this paper enables determination of TPP in air at workplaces in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of triphenyl phosphate at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Enfluran należy do wziewnych środków ogólnie znieczulających i jest izomerem położeniowym innego anestetyku – izofluranu. W temperaturze pokojowej jest bezbarwną, przezroczystą cieczą o słabym, słodkim zapachu. W przypadku narażenia zawodowego enfluran jest często stosowany w mieszaninie z innymi anestetykami wziewnym, dlatego objawy trudno przypisać do działania jednej substancji. U pracowników narażonych na mieszaninę anestetyków odnotowano takie objawy, jak: podrażnienie oczu i skóry, depresję ośrodkowego układu nerwowego, zaburzenia ze strony układu krążenia, uszkodzenia wątroby i nerek. Celem prac badawczych było opracowanie i walidacja metody oznaczania enfluranu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania enfluranu polega na adsorpcji par tej substancji na węglu aktywnym typu „Petroleum Charcoal”, ekstrakcji toluenem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Wskazania spektrometru mas pracującego w trybie SIM w funkcji stężenia enfluranu w badanym zakresie stężeń (10,0 ÷ 400,0 µg/ml) mają charakter liniowy. Opracowana metoda analityczna umożliwia oznaczanie enfluranu w powietrzu na stanowiskach pracy w obecności innych anestetyków wziewnych. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania enfluranu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii.
EN
Enflurane is an inhaled general anaesthetic and is a positional isomer of another anaesthetic, namely isoflurane. At room temperature, it is a colourless, transparent liquid with a faint, sweet odour. In occupational exposure, enflurane is often used in a mixture with other inhalation anaesthetics, so symptoms are difficult to attribute to the effects of any one substance. Symptoms such as eye and skin irritation, central nervous system depression, cardiovascular disorders, and liver and kidney damage have been reported in workers exposed to anaesthetic mixtures. The aim of this research work was to develop and validate a method for the determination of enflurane in air at workplaces. This enflurane determination method is based on the adsorption of substance vapours on the ‘Petroleum Charcoal’ activated carbon, extraction with toluene and chromatographic analysis of the resulting solution. The tests used a gas chromatograph coupled with a mass spectrometer (GC-MS) fitted with a capillary polar column ZB-WAXplus (60 m length, 0.25 mm diameter and 0.5 µm stationary phase film thickness). The SIM mass spectrometer readings as a function of enflurane concentration within the tested concentration range (10.0-400 µg/ml) are linear. The analytical method developed enables the determination of enflurane in air at workplaces in the presence of other inhalation anaesthetics. The method is precise and accurate and it meets the requirements of PN-EN 482 for the determination of chemicals. The method developed for the determination of enflurane in air at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering studies.
PL
Masa poreakcyjna 5-chloro-2-metylo-2H-izotiazol-3-onu i 2-metylo-2H-izotiazol-3-onu (3: 1), określana jako CIT/MIT, w temperaturze pokojowej jest jasnożółtym ciałem stałym o strukturze krystalicznej. CIT/MIT bardzo dobrze rozpuszcza się w wodzie (>3 kg/l), natomiast słabiej w takich rozpuszczalnikach organicznych, jak: metanol, octan etylu czy toluen. CIT/MIT jest powszechnie stosowany jako środek biobójczy w produktach konsumenckich. Występuje zarówno w kosmetykach, jak i środkach czyszczących, a także produktach detergentowych (np. w farbach). Szkodliwe działanie mieszaniny CIT/MIT manifestuje się podrażnieniem skóry oraz błon śluzowych oczu. Substancja ta może również działać uczulająco zwłaszcza w stężeniach wyższych niż 0,0015%. Celem prac badawczych było opracowanie i walidacja metody oznaczania mieszaniny CIT/MIT w środowisku pracy. Opracowana metoda oznaczania mieszaniny CIT/MIT polega na pochłanianiu par lub aerozolu na płuczki z wodą destylowaną i oznaczeniu składników mieszaniny techniką wysokosprawnej chromatografii cieczowej z detekcją spektrofotometryczną (HPLC-UV-VIS). Opracowana metoda jest liniowa w zakresie stężeń 0,2 ÷ 4 μg/ml, co odpowiada zakresowi 0,02 ÷ 0,4 mg/m3 dla próbki powietrza o objętości 100 l. Sporządzona metoda analityczna umożliwia oznaczanie mieszaniny CIT/MIT w powietrzu na stanowiskach pracy w obecności innych związków z grupy izotiazolanów. Metoda charakteryzuje się dobrą precyzją i dokładnością, spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania mieszaniny CIT/MIT w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia dotyczące zdrowia oraz bezpieczeństwa i higieny środowiska pracy, będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Post reaction mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one (3: 1) named as CIT/MIT in room temperature is a light yellow crystalline solid. CIT/MIT is highly soluble in water (>3 kg/l) and slightly soluble in such organic solvents, as methanol, ethyl acetate or toluene. CIT/MIT is used as biocide in consumer products like cosmetics, cleaning fluids or paints. CIT/MIT may cause side effects such as skin or eye irritation. It may also cause skin sensitization especially in concentrations higher than 0.0015%. The aim of the work was to develop and validate a method of determination of CIT/MIT in workplace air. The method is based on collection of the vapors or aerosol of these substances in water filed impingers, and analysis of the resulted solution by means of HPLC-UV-VIS technique. The developed method is linear in the concentration range of 0.2–4 µg/ml, which corresponds to the range of 0.02–0.4 mg/m3 for a 100-L air sample. The analytical method described in this paper enables determination of CIT/MIT mixture in air at workplaces in the presence of other isothiazolones. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of CIT/MIT at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
12
PL
2,6-Di-tert-butylo-4-metylofenol (BHT) to organiczny związek należący do grupy fenoli. Substancja jest bezwonnym, białym lub żółtawobiałym, krystalicznym proszkiem. Jest przeciwutleniaczem stosowanym m.in. podczas produkcji żywności, pasz dla zwierząt, olejów zwierzęcych i roślinnych, farb, mydeł, produktów naftowych, kauczuków syntetycznych oraz tworzyw sztucznych. Narażenie pracowników na BHT może wystąpić podczas produkcji, przetwarzania i stosowania substancji chemicznej. W 2021 r. Zespół Ekspertów ds. Czynników Chemicznych Międzyresortowej Komisji ds. NDS i NDN zaproponował przyjęcie dla BHT wartości NDS na poziomie 10 mg/m3. Celem badań było opracowanie metody oznaczania BHT w powietrzu na stanowiskach pracy do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na: zatrzymaniu 2,6-di-tert-butylo-4-metylofenolu obecnego w badanym powietrzu na filtrze z włókna szklanego i sorbencie XAD-7, wymyciu zatrzymanej substancji roztworem N,N-dimetyloformamidu w metanolu i analizie tak uzyskanego roztworu z zastosowaniem chromatografii gazowej z detekcją płomieniowo-jonizacyjną. Najmniejsze stężenie BHT, jakie można oznaczyć w warunkach pobierania próbek powietrza i wykonania oznaczania, wynosi 0,96 mg/m3 (dla próbki powietrza o objętości 60 litrów). Metoda oznaczania BHT została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
2,6-Di-tert-butyl-4-methylphenol (BHT) is an organic compound belonging to the phenol group and is an odorless, white or yellowish-white crystalline powder. BHT is an antioxidant used in the production of food, animal feed, animal and vegetable oils, paints, petroleum product soaps, synthetic rubbers and plastics, among others. Worker exposure to BHT can occur during the production, processing and use of the chemical. In 2021 the Group of Experts for Chemical Agents of the Interdepartmental Commission for MAC and MAI proposed MAC value of 10 mg/m3 for BHT. The aim of this study was to develop a method for determining BHT in workplace air for occupational exposure assessment within 1/10 ÷ 2 of the proposed MAC value. The method is based on retaining the BHT present in the air on a glass fiber filter and XAD-7 sorbent, leaching the retained substance with a solution of N,N-dimethylformamide in methanol and analyzing the solution by the use of gas chromatography with flame-ionization detection. The smallest concentration of BHT that can be determined under the conditions of air sampling and performing the determination is 0.96 mg/m3 (for an air sample of 60 liters). The method for the determination of BHT is presented in the form of an analytical procedure, which is included in the appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
N-Metyloformamid (NMF) jest bezbarwną cieczą o słabym zapachu amoniaku i gęstości względnej zbliżonej do gęstości wody. NMF jest stosowany w syntezie środków owadobójczych, w produkcji izocyjanianu metylu oraz do ekstrakcji węglowodorów aromatycznych w procesie rafinacji ropy naftowej. Najistotniejszym negatywnym skutkiem zdrowotnym narażenia na NMF jest jego działanie hepatotoksyczne. Związek ten podejrzewany jest również o działanie embriotoksyczne i teratogenne. Celem prac badawczych było opracowanie i walidacja metody oznaczania NMF w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania NMF polega na adsorpcji par tej substancji na żelu krzemionkowym, ekstrakcji przy użyciu 3-procentowego roztworu metanolu oraz analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf cieczowy z detektorem spektrofotometrycznym. Metoda jest liniowa (r = 0,9994) w zakresie stężeń 1,65 ÷ 33 µg/ml, co odpowiada zakresowi 0,33 ÷ 6,6 mg/m³ dla próbki powietrza 10 l. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania NMF w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej zamieszczonej w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
N-Methylformamide (NMF) is a colorless liquid with slight ammonia like odor and the specific gravity similar to water. NMF is chemical compound used in production of insecticides, methyl isocyanate and for extraction of aromatic hydrocarbons in an oil refining process. The most important adverse effect of NMF exposure is its hepatotoxicity. NMF is also suspected to be embriotoxic and teratogenic agent. The aim of this study was to develop and validate method for determining NMF in workplace air. The developed method is based on adsorption of NMF vapors on silica gel, extraction with a solution of 3% methanol and chromatographic analysis of the obtained solution. The study was performed with high performance liquid chromatography with spectrophotometric detection. The developed method is linear (r = 0.9994) in the concentration range of 1.65–33.0 µg/ml, which corresponds to the range of 0.33–66 mg/m³ for a 10-L air sample. The analytical method described in this paper is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. The developed method of determination of NMF in workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kobalt ze względu na swoje fizykochemiczne właściwości w formie metalicznej jest wykorzystywany przy produkcji stopów odpornych na temperaturę, będących magnesami trwałymi i odlewniczych. Dodatkowo szerokie zastosowanie znajdują sole kobaltu, które są stosowane przy produkcji pigmentów, sykatyw do farb olejnych oraz baterii. Kobalt metaliczny w formie drobnego proszku w kontakcie ze skórą może wywoływać odpowiedź alergiczną. Głównym zagrożeniem dla zdrowia pracownika są rozpuszczalne sole kobaltu, które zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) są sklasyfikowane jako substancje rakotwórcze. Celem badań było opracowanie metody oznaczania kobaltu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu aerozolu kobaltu i jego związków zawartych w powietrzu na filtr, mineralizacji filtra w kwasie azotowym(V) i kwasie chlorowodorowym w podwyższonej temperaturze, a następnie oznaczeniu zawartości kobaltu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie kobaltu i jego związków w powietrzu w stężeniach 0,0001 ÷ 0,002 mg/m³ dla frakcji respirabilnej. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Due to its physicochemical properties, cobalt in metallic form is used in the production of the following alloys: heat resistant, permanent magnets and foundry alloys. Moreover, cobalt salts are widely used in the production of pigments, oil drying agents and batteries. Metallic cobalt in the form of fine powder in contact with skin can cause an allergic response. However, the main danger are soluble cobalt salts, which are classified as carcinogens according to the European Union Commission Regulation (WE 1272/2008). The aim of this study was to develop a method for determining cobalt to assess occupational exposure within 1/10 ÷ 2 of the proposed MAC value. The method consists in taking an aerosol of cobalt and its compounds contained in the air onto a filter, mineralization of the filter in nitric acid (V) and hydrochloric acid at elevated temperature and then determination of cobalt content in the sample using atomic absorption spectrometry with electrothermal atomization (ET-AAS). Validation requirements presented in Standard No. PN-EN 482 were fulfilled during the tests. The method allow the determination of cobalt and its compounds in workplace air at concentrations of 0.0001 ÷ 0.002 mg/m³ for the respirable fraction. LOQ is 0.017 µg/m³ . The overall precision of the study was 5.39% and the expanded uncertainty was 23.56%. The method for determining cobalt and its compounds has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kadm i jego związki nieorganiczne powodują raka płuc. Wykazano także zależność między narażeniem ludzi na kadm i jego związki a rakiem nerek i prostaty. Szacuje się, że na kadm i jego związki jest narażonych kilka tysięcy osób zatrudnionych w hutnictwie, przy produkcji akumulatorów, stopów, pigmentów, tworzyw sztucznych oraz przy spawaniu. W Polsce wartość najwyższego dopuszczalnego stężenia (NDS) dla kadmu (CAS: 7440-43-9) i jego związków nieorganicznych została zmieniona. Wartość NDS mająca obowiązywać od 2027 roku odnosi się do frakcji wdychalnej i wynosi 0,001 mg/m³ . W okresie przejściowym od lipca 2021 do 2027 roku przyjęto wartość NDS wynoszącą 0,004 mg/m³ . Opracowano metodę oznaczania kadmu i jego nieorganicznych związków umożliwiającą oznaczanie tej substancji w powietrzu na stanowiskach pracy z wykorzystaniem metody absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS), zgodną z wymaganiami zawartymi w normie europejskiej PN-EN 482. Kadm oznaczano w zakresie stężeń: 0,10 ÷ 1,00 i 0,50 ÷ 5,00 µg/l. Uzyskano oznaczalność metody w powietrzu na stanowiskach pracy wynoszącą 0,0001 mg/m³ oraz możliwość oznaczania tej substancji w zakresie stężeń 0,00010 ÷ 0,0104 mg/m³ dla próbki powietrza 480 l. Przedstawiona metoda umożliwia oznaczanie kadmu i jego związków nieorganicznych w powietrzu na stanowiskach pracy w wymaganym zakresie 0,1 ÷ 2 nowych wartości NDS. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Cadmium and its inorganic compounds cause lung cancer. A relationship between human exposure to cadmium and its inorganic compounds and renal and prostate cancer has also been demonstrated. It is estimated that several thousand people employed in metal production are exposed to cadmium and its inorganic compounds; in metallurgy, in the production batteries, alloys, pigments, plastics and welders. The values of the maximum allowable concentration (NDS) for cadmium [7440-43-9] and its inorganic compounds in Poland were changed. The NDS value, which is meant to become obligatory from 2027, refers to the inhalable fraction and amounts to 0.001 mg/m³ . In the transition period from July 2021 to 2027, the NDS value was set at 0.004 mg/m³ . A method for the determination of cadmium and its inorganic compounds was developed, enabling the determination of this substance in the air at workplaces with the use of the atomic absorption spectrometry with electrothermal atomization (ET AAS), in accordance with the requirements of the European standard PN-EN 482. Cadmium was determined in the concentration range: 0.10–1.00 µg/l and 0.50–5.00 µg/l. The method’s determination in the air at workplaces of 0.0001 mg/m³ was obtained for, as well as the possibility of determining this substance in the concentration range of 0.00010–0.0104 mg/m³ for a 480-l air sample. The presented method enables the determination of this substance in the air at workplaces in the required range of 0.1–2 new NDS values. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
2-Metoksypropan-1-ol (2M1P) jest bezbarwną, palną cieczą o działaniu drażniącym. Jest to I-rzędowy alkohol powstający jako produkt uboczny przy produkcji eteru monometylowego glikolu propylenowego (1-metoksypropan-2-olu). W związku z tym narażenie na 2M1P zawsze wiąże się z narażeniem na 1-metoksypropan-2-ol, który jest stosowany jako rozpuszczalnik farb, lakierów, barwników itp. oraz jako składnik preparatów czyszczących i półprodukt do syntezy chemicznej. W środowisku pracy pracownicy mogą być narażeni na działanie 2-metoksypropan-1-olu drogą inhalacyjną i dermalną. Celem prac badawczych było opracowanie i walidacja metody oznaczania 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania 2M1P polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji przy użyciu roztworu metanolu w disiarczku węgla i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 10,0 ÷ 400,0 µg/ml, co odpowiada zakresowi 1,0 ÷ 40,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
PL
1-Metylo-2-pirolidon (NMP) jest higroskopijną cieczą o lekko aminowym (rybnym) zapachu, pochodną γ-laktamu. NMP znalazł zastosowanie w przemyśle chemicznym jako polarny rozpuszczalnik do ekstrakcji, do mycia i odłuszczania części metalowych, do usuwania pozostałości żywic z części elektronicznych oraz starych powłok malarskich. Główną drogą narażenia na NMP w środowisku pracy jest droga inhalacyjna oraz kontakt przez skórę. Celem prac badawczych było opracowanie i walidacja metody oznaczania 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania NMP polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji dichlorometanem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 40,0 ÷ 800,0 µg/ml, co odpowiada zakresowi 4,0 ÷ 80,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1-Methyl-2-pyrrolidone (NMP) is a hygroscopic liquid with a slightly amine (fishy) odor, a derivative of γ-lactam. NMP has been used in the chemical industry as a polar solvent for extraction, washing and degreasing metal parts, removing residual resins from electronic parts, removing old paint coatings. The main route of exposure to NMP in workplace air is the inhalation route and skin contact. The aim of this study was to develop and validate a method for determining 1-methyl-2-pyrrolidone in workplace air. The developed method of NMP determination consists in adsorption of vapors of this substance on coconut shell charcoal, extraction with a dichloromethane and chromatographic analysis of the solution obtained in this way. The study was performed with gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a polar ZB-WAXplus capillary column (length 60 m, diameter 0.25 mm and the film thickness of the stationary phase 0.5 µm). The developed method is linear in the concentration range of 40.0–800.0 µg/ml, which corresponds to the range of 4.0–80.0 mg/m³ for a 10-L air sample. The analytical method described in this paper makes it possible to determine 1-methyl-2-pyrrolidone in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for determining chemical agents listed in Standard No. PN-EN 482. The developed method for determining 1-methyl-2-pyrrolidone at workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
1-Etylo-2-pirolidon (NEP) jest bezbarwną cieczą o zapachu zbliżonym do amoniaku. Należy do związków organicznych z grupy laktamów, czyli jest etylową pochodną 2-pirolidonu. 1-Etylo-2-pirolidon ze względu na podobne właściwości fizykochemiczne stosowany jest w przemyśle jako zamiennik 1-metylo-2-pirolidonu (NMP). Używany jest jako rozpuszczalnik w przemyśle polimerowym, petrochemicznym, farb i lakierów, elektronicznym. Ponadto znalazł zastosowanie jako środek czyszczący do usuwania farb, lakierów, klejów, oleju czy smarów. 1-Etylo-2-pirolidon może wchłaniać się przez skórę, a także drogą inhalacyjną i pokarmową. Celem prac badawczych było opracowanie i walidacja metody oznaczania 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania NEP polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji dichlorometanem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 15,0 ÷ 320,0 µg/ml, co odpowiada zakresowi 1,5 ÷ 32,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
-Ethyl-2-pyrrolidone (NEP) is a colorless liquid with ammonia-like odor. It belongs to the organic compounds from the lactam group, i.e., the ethyl derivative of 2-pyrrolidone. 1-Ethyl-2-pyrrolidone, due to similar physicochemical properties, is used in industry as a substitute for 1-methyl-2-pyrrolidone (NMP). It is used as a solvent in polymer, petrochemical, paint and varnish, and electronic industries. Moreover, it has been used as a cleaning agent for removing paints, varnishes, adhesives, oil or grease. 1-Ethyl-2-pyrrolidone can be absorbed through the skin as well as through inhalation and food. The aim of the this study was to develop and validate a method for determining 1-ethyl-2-pyrrolidone in workplace air. The developed method of NEP determination consists in adsorption of vapors of this substance on coconut shell charcoal, extraction with a dichloromethane and chromatographic analysis of the obtained solution. The study was performed using a gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a polar ZB-WAXplus capillary column (length 60 m, diameter 0.25 mm and the film thickness of the stationary phase 0.5 µm). The developed method is linear in the concentration range of 15.0–320.0 µg/ml, which corresponds to the range of 1.5–32.0 mg/m³ for a 10-L air sample. The analytical method described in this paper makes it possible to determine 1-ethyl-2-pyrrolidone in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for measuring chemical agents listed in Standard No. PN-EN 482. Developed method of determining 1-ethyl2-pyrrolidone at workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Celem prac badawczych było opracowanie i walidacja metody oznaczania frakcji wdychalnej i respirabilnej związków manganu, niklu i żelaza w powietrzu na stanowiskach pracy. Metoda polega na pobraniu z powietrza na umieszczone w odpowiednim próbniku filtry z estrów celulozy frakcji wdychalnej i respirabilnej badanych związków. Filtry mineralizuje się w stężonym kwasie azotowym(V) i sporządza roztwór do analizy w rozcieńczonym kwasie azotowym(V). Zastosowanie różnej krotności rozcieńczania roztworu próbki po mineralizacji umożliwia wykorzystanie wyznaczonych zakresów krzywych wzorcowych przy oznaczaniu substancji jako mangan, nikiel i żelazo. Dodatek soli lantanu (buforu korygującego) zapobiega występowaniu interferencji chemicznych, użycie lampy deuterowej eliminuje interferencje tła. Opracowana metoda umożliwia oznaczanie wybranych substancji w powietrzu środowiska pracy w zakresach stężeń odpowiadających zakresowi 0,1 ÷ 2 obecnie obowiązujących wartości NDS i umożliwia również oznaczanie niklu i jego związków we frakcji wdychalnej dla obecnie proponowanej, nowej wartości najwyższego dopuszczalnego stężenia. Opracowana metoda została poddana walidacji zgodnie z wymaganiami zawartymi w normie PN-EN 482 i uzyskano dobre wyniki walidacyjne. Metoda może być wykorzystana do oceny narażenia zawodowego na związki niklu, manganu i żelaza w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania związków manganu, niklu i żelaza została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
The aim of this study was to develop and validate a method for determining of inhalable and respirable fraction of compounds of manganese, nickel and iron in workplace air. The method is based on passing the tested air through a filter from the cellulose ester mixture placed in a specific sampler. The filter mineralizes in concentrated nitric acid (V) and makes a solution for analysis in diluted nitric acid (V). The use of different dilutions of the sample solution after mineralization makes it possible to use the ranges of standard curves for the determination of substances as manganese, nickel and iron. The addition of lanthanum salt (correction buffer) prevents the occurrence of chemical interference, the use of deuterium lamp eliminates background interference. The developed method enables the determination of selected substances in the air of the working environment in the concentration ranges corresponding to the range from 0.1 to 2 MACs values and also enables the determination of nickel and its compounds in the inhalable fraction for the currently proposed new value of the maximum permissible concentration. The developed method has been validated in accordance with the requirements of Standard No. PN-EN 482 and good validation results were obtained. The method can be used for assessing occupational exposure to compounds of manganese, nickel and iron and associated risk to workers’ health. The developed method of determining compounds of manganese, nickel and iron has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Wolfram jest metalem przejściowym, który występuje w skorupie ziemskiej w postaci minerałów, z których po wydobyciu jest ekstrahowany. Brakuje danych na temat chronicznych efektów kontaktu z wolframem. Wolfram metaliczny w postaci drobnego proszku jest łatwopalny i może powodować mechaniczne podrażnienie skóry i oczu. Istnieją rozpuszczalne związki wolframu, które są sklasyfikowane jako związki toksyczne, powodujące uszkodzenie oczu i zagrażające środowisku wodnemu. Celem prac badawczych była nowelizacja normy PN-Z-04221-3:1996 dotyczącej oznaczania rozpuszczalnych związków wolframu na stanowiskach pracy metodą spektrofotometryczną z rodankiem potasu. Nowelizacja normy została przeprowadzona, ponieważ norma PN-Z-04221-3 opisuje metodę, w której oznaczalność wynosi 0,25 wartości NDS, a zgodnie z normą europejską PN-EN 482 oznaczalność metody musi być w zakresie 0,1 ÷ 2 NDS. Metoda polega na zatrzymaniu aerozolu rozpuszczalnych związków wolframu na filtrze z mieszaniny estrów celulozowych, a następnie rozpuszczeniu ich w wodzie. W kolejnym etapie wolfram redukowany jest z użyciem chlorku cyny, a następnie ulega reakcji z rodankiem potasu, dając barwny kompleks, który należy ekstrahować alkoholem izoamylowym, aby następnie zmierzyć absorbancję ekstraktu na spektrofotometrze UV-Vis. Pomiary wykonano z użyciem spektrofotometru UV-Vis Heλios firmy ThermoSpectronic model Beta. Wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482 zostały spełnione przy wykonywaniu pomiarów. Dzięki metodzie można oznaczać znajdujące się w powietrzu rozpuszczalne związki wolframu o stężeniach 0,1 ÷ 2 mg/m³ . Granica oznaczalności LOQ wynosi 1,875 ng. Precyzja pomiarów wynosi 5,06%, a niepewność rozszerzona 22,09%. Metoda oznaczania rozpuszczalnych związków wolframu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Tungsten is a transition metal which occurs in the Earth’s crust as minerals which after being mined is extracted. There is no data on chronic effects of contact with tungsten, although fine tungsten powder is flammable and can cause mechanical irritation to skin and eyes. However, there are soluble tungsten compounds, which are classified as toxic, causing damage to the eyes, and being harmful to the aquatic environment. The aim of the study was to amend Standard No. PN-Z-04221-3 determination of soluble tungsten compounds in workplace air using spectrophotometric method with potassium thiocyanate. The amendment was performed because Standard No. PN-Z-04221-3 describes a method in which the quantification is 0.25 mg/m³ , according to European Standard No. EN 482 the quantification of method must be in range of 0.1 – 2 mg/m³ . The method is based on depositing soluble tungsten compounds on a cellulose esters filter and then dissolving them in water. Then tungsten is reduced with tin chloride, after reaction with potassium thiocyanate, tungsten becomes a complex. Tungsten complex should be extracted with isoamyl alcohol and then absorbance should be measured on a UV-Vis spectrophotometer. The tests were performed with the UV-Vis Heλios spectrophotometer by ThermoSpectronic model Beta. The validation requirements of European Standard No. EN 482 were met. With this method soluble tungsten compounds in air can be determined at concentration of 0.1 – 2 mg/m³ . The limit of quantification (LOQ) is 1.875 ng. The overall accuracy of the method is 5.06% and its relative total uncertainty is 22.09%. The method for determining tungsten has been recorded in a form of an analytical procedure (see Appendix). This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.
first rewind previous Strona / 10 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.