Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  powierzchnia liścia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Ecological stoichiometry is the study of the balance of multiple chemical elements in ecological interactions. Terrestrial plants exhibit inter- and intra-specific differences in leaf C:N:P stoichiometry that has been used to study plant competition and succession, nutrient use efficiency, N and P nutrient limitation. However, little is known about leaf C:N ratio, N:P ratio in the Loess Plateau, particularly the pattern of leaf C:N:P stoichiometry during the secondary succession. Thus, leaf stoichiometric traits and specific leaf area (SLA) of dominant species at different secondary successional stages in the Loess Plateau were measured. The study was conducted at the Lianjiabian forest region of the Loess Plateau (35.03[degrees]-36.37[degrees]N and 108.10[degrees]-109.08[degrees]E), Gansu, China. Leaf C:N:P stoichiometry and specific leaf area of 18 dominant species (herb) community stage (Stipa bungeana Trin, Bothriochloa ischaemun (Linn.) Keng, Carex lanceolata Boott, Artemisia sacrorum Ledeb, Pulsatilla chinensis (Bunge) Regel, Potentilla chinensis Ser), shrub community stage (Sophora viciifolia Hance, Hippophae rhamnoides (Linn.), Ostryopsis davidiana Decne, Rubus palmatus Thunb, Rosa xanthina Lindl, Acer ginnala Maxim, Spiraea pubescens Turcz, Ziziphus jujuba var. spinosa), early forest community stage (Populus davidiana Dode, Betula platyphylla Suk, Platycladus orientalis (Linn.) Franco), climax forest community stage (Quercus liaotungensis Koidz)) at four secondary successional stages were determined in the Loess Plateau in early June of 2006. The herb and shrub community stage had higher SLA than that in the early forest community stage and climax forest community stage. The Leaf C, N, C:N ratio and N:P ratio at different secondary successional stages were significantly different (P <0.05), but the leaf P didn't differ. The N:P ratio of herb community stage were significant difference from those of the others stages (shrub community stage, early forest community stage and climax forest community stage), but there were not significant difference among the shrub community stage, early forest community stage and climax forest community stage. N:P ratio shifts of the species were consistent along the successional sere, although the N:P ratio of the different species at a successional stage varied considerably. On community level, the lowest N:P ratio (9.8) was found in herb community stage in the secondary succession, the N:P ratio increased to 12.9 in shrub community stage, declined to 12.4 in early forest community stage, and increased in climax forest community stage (e.g. 12.6 in the Quercus liaotungensis Koidz community). The results suggest that the vegetation productivity of the Loess Plateau was N-limited at each secondary successional stage.
EN
We studied the response in growth and phenology of naturally regenerated beech seedlings to changed ecological conditions over 14 and 19-years after cutting with different intensity. Five different types of stand densities were modelled: plot C - control plot - no cut, L - low intensity cut, M - medium intensity cut, H - high intensity cut and CC - clear cut, with 1, 8, 22, 53 and 100% of relative irradiation, and 66, 68, 78, 92 and 100% of through fall, respectively. We were focussing on tree height growth and leaf area. Our phenological observations were aimed at onset and course of two spring vegetative phenophases: bud-burst and leaf unfolding. Already in two-year-old beech seedlings we found significant differences in height growth; the differences in mean leaf area, however, were observed later. From the viewpoint of phenotypic plasticity, the height growth in beech seedlings represented more sensitive response to the environment than the leaf area. According to leaf area size and height growth in the beech seedlings on control plot, the stress conditions were indicated, primarily from the lacking light. With stand opening, the development of recruitment was getting better, and beginning with plot M the increase of seedlings height and leaf area became continuously related to the amount of radiation. The results of phenological observations showed that the spring phenophases in the seedlings start first on control plot. The start of spring phenophases on the clearcut was always observed the latest, even in comparison with the parent stand. Correlation analysis confirmed a significant correlation (P <0.05, r = -0.61) between the mean air temperature in March and April and start of the phenophase leafing in the individual years. Analysis of long-term research showed that the trend of leafing's onset observed in course of 18 years was significant (P <0.05), manifested a shift towards earlier dates.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.