Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  powertrain control
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This work deals with how to improve the energy efficiency, the safety, reliability and the driving comfort by powertrain control in EVs and HEVs from three aspects: 1) How to improve the energy efficiency: Using two cases study in Chapter 2 to present the idea about how to improve the powertrain efficiency of EVs and HEVs. On the other hand, the simulation study shows the current solution in EVs of increasing the driving range by enlarging battery pack size is at the expense of EVs energy efficiency, not to mention the increasing cost and the increasing difficulty of battery management system (BMS); 2) How to improve the safety and reliability by BMS: Battery is the most expensive component both in pure electric and hybrid powertrain. People expect the battery as a green energy solution to liberate society from the dependency of fossil fuel. The reality is that battery has many limitations and battery performance strongly depends on how the batteries are used and also on the environmental conditions. BMS should be designed to keep the battery within a safe operating window and to ensure a long cycle life based on battery limitations and performance characteristics. The popular used Thevenin battery model is analyzed to be linear and to be an improper model for state of charge (SOC) estimation. The nonlinear dynamic battery model (developed by Prof. Szumanwoski in 1980's) is used to develop the Li-ion battery model in numerical way. Finally an improved algorithm for battery SOC estimation is proposed in Chapter 3. 3) How to improve the driving comfort and reliability: a design methodology based on the co-design of scheduling and control is proposed in Chapter 4. Both the simulation and HIL test results show the method can effectively deal with the problem resulted from network-induced delays and network congestion, and can ensure the reliable and dependable control system for electric powertrain system in EVs and HEVs. This work also shows that the powertrain design and its control for EVs and HEVs are highly multidisciplinary, which requires researchers and engineers to have multidisciplinary knowledge or to cooperate closely. When people from different disciplines try to understand basic problems from other disciplines and work together closely, they may easily find the reasons and solutions to the problems. Nowadays EVs and HEVs are just at the beginning of mass production. Some unreliable driving phenomena have reported to appear during EVs operating, engineers haven't found the reason yet. As the number of EVs and HEVs entering into the market increases, more and more technology challenges will appear. For researchers it is also very important to work together with vehicle engineers to find the real reason of unreliable driving phenomena, and to use the research results to resolve the problems. Currently the auto industry is undergoing a radical transformation to phase out conventional vehicles (CVs) powered solely by internal combustion engines (ICEs.) Opportunities and challenges exist both for the auto industry and for auto research institutions. The Author believes that the trend for future vehicle powertrain will be all-electric and hybrid, and the current powertrain technology for EVs and HEVs has many aspects and potential to improve. In next decades, the development of powertrain for EVs and HEVs will focus on how to increase the energy efficiency, improve the safety, reliability and driving comfort, at the same time to make the powertrain more compact.
PL
Elektroniczne systemy wspomagające kierowcę pomagają kierującym kontrolować sytuację na drodze, przekazują sygnały do układu hamulcowego i napędowego, rozpoznają znaki drogowe, pozwalają utrzymać odpowiedni dystans w czasie jazdy w kolumnie, a także kontrolują położenie pojazdu na pasie ruchu. Elektroniczne systemy wspomagające kierowcę pomagają również zmniejszyć przebiegowe zużycie paliwa, poprzez odpowiednie sterowanie układem napędowym, podawanie podpowiedzi kierowcy co do sposobu prowadzenia pojazdu lub wyboru trasy przejazdu. W pracy przedstawiono możliwości ograniczenia przebiegowego zużycia paliwa przy zastosowaniu elektronicznych systemów wspomagających kierowców na przykładzie dwóch wybranych układów napędowych samochodów. W pracy przedstawione zostały również przykłady komercyjnych systemów wspomagających kierowców, które umożliwiają redukcję przebiegowego zużycia paliwa.
EN
Electronic driver assistance systems help drivers to control traffic situation, transmit signals to the brake and drive systems, recognize traffic signs, allow dirver to keep proper distance when driving in the column, as well as control the vehicle position on the lane. Electronic driver assistance systems also help reduce fuel consuption by appropriate control of the propulsion system, giving hints to the driver how to control the vehicle or which route to choose. Examples of potentials for fuel consumption reduction with electronic driver assistance systems of two selected vehicle propulsion systems have been described. The paper includes examples of commercial driver assistance systems that enable fuel consumption reduction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.