Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  power-to-gas
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Sources of renewable energy have been increasingly used all over the world. This kind of energy is highly desirable because of its unlimited availability. Unfortunately, renewable energy production very much depends on weather conditions. Consequently, it is necessary to store the produced excess energy in order to use it when needed. There is a technology able to produce a hydrogen/methane fuel from excess renewable energy, which may be stored. This technology is called the Power-to-Gas technology (P2G). Since the efficiency of this technological process depends on the hydrogen fraction in the renewable energy fuel, there is a need to increase this fraction. Concurrently, the gas microturbine technology is increasingly widely used in various industries (aviation, energy, automotive, military, etc). The P2G technology and the gas microturbine technology are likely to be integrated in the near future and, as mentioned above, the hydrogen fraction in the methane-hydrogen fuel will tend to increase. In order to power a gas microturbine with the methane-hydrogen fuel, it will be necessary to modify the combustor to avoid an excessive temperature increase and flashbacks. In this paper it is proposed to apply an autonomous internal exhaust gas recirculation system to resolve the hydrogen combustion problems indicated above. The operating principle and the proposed design of the recirculation system and the latter’s impact on the combustor’s operating parameters and emissivity (NOx and CO) are presented.
EN
The article presents the review of the current state of research with the aim of understanding the problems associated with hydrogen injection into the gas grid and its impact on end use. The review focuses on the field of the sensitivity of individual components of the gas system to increased hydrogen concentration. The work presents software-based gas quality tracking problem in gas distribution network and discusses the steady-state modelling and the effect of hydrogen injection on the operational behaviour of the gas grid under consideration.
PL
W artykule dokonano przeglądu aktualnego stanu wiedzy w zakresie projektów badawczych obejmujących proces zatłaczania wodoru do sieci gazowych oraz jego wpływ na odbiorniki gazowe. Omówiono dostępne w literaturze wyniki badań wrażliwości poszczególnych elementów systemu gazowniczego na podwyższone stężenie wodoru. Zaprezentowano softwarową metodę śledzenia jakości gazu w sieciach dystrybucyjnych i związany z nią problem obliczeniowy sieci w stanach ustalonych oraz omówiono wyniki badań wpływu zatłaczania wodoru na parametry eksploatacyjne przykładowej sieci gazowej.
PL
W ostatnim czasie można zaobserwować rosnące zainteresowanie dodawaniem do sieci gazowej wodoru pochodzącego ze źródeł odnawialnych, tzn. technologią power-to-gas. Umożliwia ona przekształcenie wyprodukowanej energii elektrycznej do postaci wodoru i zmagazynowanie go w systemie gazowniczym. Technologia ta może stać się jednym z istotnych czynników zwiększenia udziału energii odnawialnej w całkowitym bilansie energetycznym. Skutkiem dodawania wodoru do gazu ziemnego będzie obecność w sieciach gazowych mieszaniny gazu ziemnego oraz wodoru, która siecią tą docierać będzie do odbiorców końcowych, w tym odbiorców w gospodarstwach domowych. Właściwości fizykochemiczne wodoru, takie jak np. gęstość właściwa czy lepkość, istotnie różnią się od właściwości fizykochemicznych składników gazu ziemnego, takich jak metan, etan, propan, butan, azot itd. W związku z powyższym właściwości mieszaniny gazowej po dodaniu do niej wodoru będą się znacznie różnić od właściwości obecnie stosowanego gazu ziemnego. Tym samym elementy systemu gazowniczego, a także odbiorniki gazu u odbiorców końcowych będą podlegać oddziaływaniu wodoru. Konieczne staje się zatem zapewnienie, że w granicach przewidywanych stężeń wodoru elementy systemu gazowniczego, a także odbiorniki gazu będą w stanie długotrwale pracować bez pogorszenia swych właściwości funkcjonalnych oraz zmniejszenia bezpieczeństwa technicznego. W niniejszym artykule omówiono wyniki dotychczasowych badań prowadzonych w INiG – PIB dotyczących wpływu mieszaniny gazu ziemnego i wodoru na: urządzenia gazowe użytku domowego oraz komercyjnego, rozliczenia i pomiary paliw gazowych, jakość paliw gazowych, gazomierze miechowe oraz reduktory średniego ciśnienia.
EN
Recently, there has been a growing interest in adding hydrogen from renewable sources to the gas network, i.e. Power-to-Gas technology. This technology makes it possible to convert the produced electrical power into hydrogen and to store it in the gas network. It may become one of the significant factors of increasing the share of renewable energy in the overall energy mix. The addition of hydrogen to natural gas will result in the presence of a mixture of natural gas and hydrogen in the gas networks through which it will reach end users, including household customers. The physicochemical properties of hydrogen, such as specific density or viscosity, differ significantly from those of natural gas components, such as methane, ethane, propane, butane, nitrogen, etc. As a result, the properties of a gas mixture, after adding hydrogen, will be significantly different from those of the natural gas currently in use. Thus, both gas network components and gas appliances of end users will be exposed to hydrogen. It is therefore necessary to ensure long-period operation of gas network components and gas appliances, within the limits of anticipated hydrogen concentrations, without deterioration in their functional properties and technical safety. This paper discusses the results of research conducted at INiG – PIB in terms of resistance to a mixture of natural gas and hydrogen (up to 23%) on: gas appliances for household and commercial use, gaseous fuels metering and billing, gaseous fuels quality, diaphragm gas meters and medium pressure regulators.
4
Content available Hydrogen in energy balance – selected issues
EN
Energy from different sources is fundamental to the economy of each country. Bearing in mind the limited reserves of non-renewable energy sources and the fact that their production from new deposits is becoming less economically viable, attention is paid to alternative energy sources, particularly those that are readily available or require no substantial financial investment. One possible solution may be to generate hydrogen, which will then be used for heat (energy) production using other methods. At the same time, these processes will be characterized by low emission levels compared to conventional energy sources. In recent years, more and more emphasis has been placed on the use of clean energy from renewable sources. New, more technically and economically efficient technologies are being developed. The energy use worldwide comes mostly from fossil fuel processing. It can be observed that the share of RES in global production is growing every year. At the end of the 1990s, the share of renewable energy sources was at 6–7%. Global trends indicate the increasing demand for renewable energy due to its form. Global hydrogen resources are practically inexhaustible, but the problem is its availability in molecular form. The article analyzed the use of hydrogen as a fuel. The basic problem is the inexpensive and easy extraction of hydrogen from its compounds; attention has been paid to water, which can easily be electrolytically decomposed to produce oxygen and hydrogen. Hydrogen generated by electrolysis can be stored, but due to its physicochemical properties, it is a costly process; therefore, a decision was made that it is better to store it with natural gas or use it for further reaction. In addition, hydrogen can be used as a substrate for binding and converting the increasingly problematic carbon dioxide, thus reducing its content in the atmosphere.
PL
Energia z różnych źródeł ma zasadnicze znaczenie dla gospodarki każdego kraju. Mając na uwadze ograniczone zasoby nieodnawialnych źródeł energii oraz fakt, że ich produkcja z nowych złóż staje się mniej opłacalna, zwraca się uwagę na alternatywne źródła energii, szczególnie te, które są łatwo dostępne lub nie wymagają znacznych inwestycji finansowych. Jednym możliwym rozwiązaniem może być wytwarzanie wodoru, który będzie następnie wykorzystywany do produkcji ciepła (energii) za pomocą innych metod. Jednocześnie procesy te będą charakteryzować się niskim poziomem emisji w porównaniu do konwencjonalnych źródeł energii. W ostatnich latach coraz większy nacisk kładzie się na wykorzystanie czystej energii ze źródeł odnawialnych. Trwają prace nad nowymi, wydajniejszymi technicznie i ekonomicznie technologiami. Ogólnoświatowe zużycie energii pochodzi głównie z przetwarzania paliw kopalnych. Można zaobserwować, że udział OZE w globalnej produkcji rośnie z każdym rokiem. Pod koniec lat dziewięćdziesiątych ubiegłego wieku udział odnawialnych źródeł energii kształtował się na poziomie 6–7%. Wskazują na to globalne trendy, zwiększając zapotrzebowanie na energię odnawialną ze względu na jej formę. Globalne zasoby wodoru są praktycznie niewyczerpane, ale problemem jest dostępność w postaci molekularnej. W artykule analizowano wykorzystanie wodoru jako paliwa. Podstawowym problemem jest tania i łatwa ekstrakcja wodoru z jego związków; zwrócono uwagę na wodę, którą można łatwo rozłożyć elektrolitycznie w celu wytworzenia tlenu i wodoru. Wodór generowany przez elektrolizę może być przechowywany, ale ze względu na jego właściwości fizykochemiczne jest to kosztowny proces; dlatego zdecydowano, że lepiej jest przechowywać go za pomocą gazu ziemnego lub użyć go do dalszej reakcji. Ponadto wodór może być stosowany jako substrat do wiązania i przekształcania coraz bardziej problematycznego dwutlenku węgla, zmniejszając w ten sposób jego zawartość w atmosferze.
PL
Pomimo prawie dwustuletniej historii badań i rozwoju, silnik Stirlinga również współcześnie stanowi obiekt zaawansowanych badań modelowych i eksperymentalnych. Obecnie, badania te motywowane są głównie jego korzystnymi charakterystykami środowiskowymi, możliwością wykorzystania w różnorodnych układach technologicznych i brakiem restrykcyjnych wymagań w zakresie jakości dostarczonego paliwa. Ze względu na brak technologicznych przeszkód do implementacji silnika w układach typu Power-to-Gas-to-Power (P2G2P), stanowiących technologię o potencjalnie szerokim obszarze zastosowań, badania nad możliwością adaptacji silników tego typu do wykorzystania w układach zasilanych wodorem budzą zainteresowanie zarówno środowisk akademickich, jak i inwestorów. W niniejszej pracy przedstawiono wyniki badań modelowych silnika Stirlinga zasilanego wodorem, odniesione do rezultatów otrzymanych dla analizy analogicznego silnika zasilanego paliwem systemowym w postaci gazu ziemnego. Celem przeprowadzonych badań była identyfikacja wpływu zmiany paliwa na wartości kluczowych, z punktu widzenia aplikacyjności silnika, parametrów operacyjnych. Rezultaty analizy wykazują istotną zmianę parametrów operacyjnych wraz ze zmianą rodzaju paliwa, określając jednocześnie obszary wymagające modyfikacji w celu umożliwienia wykorzystania silnika Stirlinga w układach zasilanych wodorem.
EN
Despite of almost two hundred years of history of research and development in Stirling engine technology, this engine states issue of advanced computational and experimental investigation. However, modern analyses are commonly motivated by the engine’s beneficial ecological characteristics and possibility of its application in variety of technological systems, as well as lack of strict requirements on quality of fuel being supplied. Due to lack of technological reasons, disabling implementation of the Stirling engine in Power-to-Gas-to-Power (P2G2P) units, stating one of areas of greatest potential for modern power engineering, applicability of the engine in power units supplied with hydrogen states matter of interest of both academic circles and investors. In the paper, results of model-based analysis of Stirling engine supplied with hydrogen, referred to data acquired for analogical engine supplied with conventional fuel in the form of natural gas, stating classical fuel for similar engines. The main objective of the research was identification of influence of change in fuel being supplied on values of essential – considering the Stirling engine applicability – operational parameters of the device. Results of the analysis indicate significant change in operational parameters following change in type of fuel, being derived, describing simultaneously fields of that technology requiring reconfiguration in order to enable utilization of Stirling engine in hydrogen-fuelled units.
EN
The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC – solid oxide fuel cells) and electrolysers (SOEC – solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.