Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  power system dynamics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Doświadczenia wykonane na Politechnice Krakowskiej, przedstawione w artykule pokazują, że uproszczenia przyjmowane przy budowie modeli symulacyjnych często powodują niezgodność wyników symulacyjnych z rzeczywistymi przebiegami stanu systemu. Badania przeprowadzono przy użyciu skonstruowanego wcześniej rzeczywistego pięciowęzłowego modelu laboratoryjnego systemu elektroenergetycznego. Dla zbudowanego modelu wykonano pełny proces identyfikacyjny parametrów tak, aby możliwa była budowa jego ekwiwalentu komputerowego. Model laboratoryjny na podstawie, którego zbudowano ekwiwalent symulacyjny jest układem pięciowęzłowym o strukturze zamkniętej i składa się z czterech węzłów generacyjno- odbiorczych oraz jednego węzła odbiorczego. Doświadczenia przedstawione w artykule maja na celu badanie procesów dynamicznych zachodzących w trakcie i po zwarciu.
EN
The dynamic processes occurring in power systems and system response to the disturbances are usually assessed using simulation methods. The structures of the simulation models are usually built using simplified equivalent circuits of real power system elements. In real life, to validate the results of the simulation one has to compare simulation results with data acquired from real system. The research work led at Cracow University of Technology and included in this paper shows that simplification and assumptions taken under consideration during computer model development are the source of the model errors. The research was performed using the developed laboratory model of the power system. For this model, full parameter identification procedures were performed, what was necessary to develop computer model using Matlab software. The laboratory model is a five node closed loop structure model including four generation load nodes and a single load node. The parameters of the laboratory models were selected using power based scaling. The models of the lines were designed as chain models in which each link of the PI structure is modeling about 30 km of 400 kV line. The research program conducted with the use of the lab model includes the investigation of system behavior during dynamic responses to the disturbances.
2
Content available remote The development of the real life model of the five node power system
EN
This paper presents the process of the development of the real life laboratory model of the five node power system of closed loop structure. The model was built using ‘power’ scaling and taking into consideration the parameters of the 400 kV lines built in the Polish National Power system. After the three-year development of the model, the parameters of the elements of this model were gained or obtained using classic identification procedures. During this part of the research, some differences between the parameter values given by the manufacturers and those obtained through identification procedures were reported and analyzed. The Matlab/Simulink model of the laboratory setup was then built to emulate the system behavior during dynamic states. The comparison of the currents, voltages and generator speeds proved to be simple tasks since the shape of the short-circuit current waveforms, for example, depends not only on parameter values but also on the time of the fault occurrence with respect to system voltages. Thus, the time responses of the laboratory and Simulink models were compared to evaluate time constants of the post fault processes.
PL
W niniejszym artykule opisano proces budowy laboratoryjnego pięciowęzłowego modelu systemu elektroenergetycznego o zamkniętej strukturze. Model wybudowany został z użyciem skalowania „mocowego”, gdzie parametry poszczególnych urządzeń (linii) odpowiadają polskiemu systemowi 400 kV. Po zaprojektowaniu oraz wybudowaniu systemu, co trwało trzy lata, parametry elektryczne i mechaniczne modelu systemu zostały albo uzyskane od producentów elementów, albo zidentyfikowane za pomocą klasycznych procedur. W trakcie tej części badań zaobserwowano znaczące różnice pomiędzy identyfikowanymi parametrami oraz parametrami otrzymanymi od producentów, pomimo zastosowania różnych metod identyfikacyjnych. Następnym krokiem było stworzenie modelu systemu laboratoryjnego w programie Matlab/Simulink w celu emulacji dynamiki rzeczywistego systemu. Porównanie parametrów zwarciowych okazało się trudnym przedsięwzięciem, gdyż odpowiedź systemu zależy nie tylko od wartości jego parametrów, ale także od momentu wystąpienia zakłócenia w stosunku do przebiegu napięcia. Tak więc porównanie dotyczyło głównie czasów zaniku procesów pozakłóceniowych, co pozwoliło na oszacowanie i porównanie stałych czasowych układu laboratoryjnego oraz modelu komputerowego.
EN
The emerging field of power system emulation for real time smart grid management is very demanding in terms of speed and accuracy. This paper provides detailed information about the electronics calibration process of a high-speed power network emulator dedicated to the transient stability analysis of power systems. This emulator uses mixed-signal hardware to model the dynamic behavior of a power network. Special design allows the self-calibration of the analog electronics through successive measurements and correction steps. The calibration operation guarantees high resolution of the transient stability analysis results, so that they can be reliably used for operational planning and control on real power networks.
PL
Z technicznego punktu widzenia stabilność systemu elektroenergetycznego oznacza, że po wystąpieniu zaburzenia układ powraca do stanu równowagi, w którym są zachowane pewne cechy świadczące o poprawności jego działania (zachowanie synchronizmu generatorów, utrzymanie częstotliwości i napięć w dopuszczalnych granicach). Jeśli po wystąpieniu zakłócenia układ traci którąkolwiek z tych cech, to można powiedzieć, że jest niestabilny.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.