Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  powłoka termiczna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Thermal barrier coating (TBC) with Al2O3 and 8YSZ as topcoat constituents has been developed. The commercially available 8YSZ (80% wt.), Al2O3 (17 and 19% wt.) and multiwall carbon nanotubes (MWCNT) (3% and 1% wt.) were plasma sprayed to produce composite coatings. A stress relaxation technique using a slow-speed diamond cutter has been used to relax the strain and determine the through-thickness residual stress in the coatings. A 3D finite element model was developed, the model was experimentally validated, and the model was used to establish a relationship between applied stress and relaxed strain. The addition of alumina increased the compressive residual stress on the surface of the coating by 42%, the addition of 1% MWCNT had a negligible effect on the residual stress on the coating surface. The further addition of MWCNT (3% wt.) resulted in tensile residual stress in the coating as a result of MWCNT agglomeration.
EN
The manuscript presents microstructure, geometrical product specification and results of scratch tests performed on the interlayer of thermal barrier coating (TBC) with Rockwell’s intender. The TBC was provided by depositing two layers; metallic interlayer and external ceramic layer onto a plate coating made of cobalt alloy MAR-M509 in plasma spraying process. The surface of the casting was sandblasted with Al2O3 powder in an air stream before the TBC was introduced. Scratches were made along the cross-section from a mould material (MAR-M509) through metallic interlayer and external ceramic layer in the TBC. Friction force, friction factor and acoustic emission were recorded during the test. It has been proved that metallic interlayer in the TBC of ca. 200 μm thickness forms tough coating without pores with good cohesion values and very good adhesion values to the mould.
3
Content available remote Life cycle increasing of mechanical components using thermal coatings with recasts
EN
This article concerned with proposition of friction and deterioration of functional components surfaces in adhesive deterioration area and contact endurance. It's centered for possibilities how to decrease deterioration and extend a life cycle of component choosing appropriate material, component surface adjustment, or abrasion-resistant coatings painting with expressively better properties against basic material.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.