Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  powłoka gruba
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: This study aims to investigate the potentiality of brush chromium plating process to replace conventional hard chromium plating. Design/methodology/approach: In this study brush chromium plating was applied over a H13 quality tool steel. Electron microscopy examinations and X-ray diffraction analysis were conducted in order to reveal the structural features of the coatings. Mechanical properties of the coatings were determined by hardness measurements and wear tests. Wear tests were conducted at room temperature and 500°C. Findings: Brush chromium plating, which is an environmental friendly alternative for conventional chromium plating, has potentiality to enhance wear resistance of steels. Research limitations/implications: Brush chromium plating process has good potential to replace hexavalent chromium. Further studies should focus on effect of electro-chemical parameters on structural properties of trivalent based hard chromium deposit by brush plating process. Originality/value: There have been significant researches on replacement of hexavalent based hard chromium plating in literature. Replacement by brush plating process with trivalent chromium containing electrolyte has been scarcely investigated especially for utilization in wear related applications at elevated temperatures.
2
Content available remote TEM microstructure investigations of aluminium alloys used as coating substrate
EN
Purpose: The aim of this paper was investigated structure and properties of gradient coatings produced in PVD process on AlSi9Cu aluminium alloys. Design/methodology/approach: The following results concern the structures of the substrates and coatings with the application of electron transmission and scanning microscopy; phase composition of the coatings using X-ray diffraction and grazing incident X-ray diffraction technique (GIXRD); microhardness and wear resistance. Findings: The deposited coatings are characterized by a single, double, or multi-layer structure according to the applied layers system, and the individual layers are coated even and tightly adhere to the substrate as well to each other. The analysis of coatings obtained on the surface of cast aluminium alloys by the PVD processes show a clear - over 100% - increase of the microhardness, compared to the base material microhardness. Practical implications: Achieving of new operational and functional characteristics and properties of commonly used materials, including the Al-Si-Cu alloys is often obtained by heat treatment, ie, precipitation hardening and/or surface treatment due to application or manufacturing of machined surface layer coatings of materials in a given group of materials used for different surface engineering processes. Originality/value: The paper presents the research involving the PVD coatings obtained on an unconventional substrate such as aluminium alloys. Contemporary materials should possess high mechanical properties, physical and chemical, as well as technological ones, to ensure long and reliable use. The above mentioned requirements and expectations regarding the contemporary materials are met by the non-ferrous metals alloys used nowadays, including the aluminium alloys.
EN
Purpose: The main aim of the this research was the investigation of the microstructure and the mechanical properties of the CrAlSiN+DLC coating deposited by hybrid PVD/PACVD process onto the X40CrMoV5-1 hot work tool steel substrate. Design/methodology/approach: The microstructure of the investigated coating was observed on the scanning electron microscopy and high resolution transmission electron microscopy. Tests of the coatings’ adhesion to the substrate material were made using the scratch test. A friction coefficient and the wear of coatings were determined in a test according to the ball-on-disk method. Findings: It was found that the microstructure of the nanocrystalline CrAlSiN layer consisted of fine crystallites, while their average size fitted within the range of 5-10 nm. The low-friction DLC show an amorphous character. The coating demonstrated a good adhesion to the substrate. The values of the critical load LC1 and LC2 of investigation coating account for, respectively, 36 and 76 N. In sliding dry friction conditions, after the break-in time, the friction coefficient for the investigated elements is set in the range between 0.03-0.05. The investigated coatings reveals high wear resistance. Practical implications: Economically efficient process improvement, increased production efficiency and quality and products reliability through increased durability and unfailing operation time of tools for plastic formation of non-ferrous metals and improved usable properties shall guarantee measurable economic effects to the manufacturers and users of the products. Moreover, it will enhance their competitiveness both on the domestic and overseas markets. Originality/value: The Author’s original approach was the development of a double-layer coating within one process. Such coating consists of the internal hard PVD layer providing the appropriate hardness, strength, low thermal conductivity and restricting the impact of external factors on the wear process and the external low-friction layer providing good tribological properties.
EN
Purpose: The article presents a concept of a hybrid layer, consisting of a gradient layer and anti-wear coat, intended for machine parts regeneration. Design/methodology/approach: The essence of method lies in the use of universal replacement material and its surface processing, which increases the hardness of the part that is being regenerated. The study was conducted on a material covered with a layer made of vacuum-nitraded padding weld of 17CrNi6-6, followed by an anti-wear DCL carbon coat. The morphology of thus created layers and their wear strength has been examined and their utility value has been evaluated. Findings: The hybrid layers under study have been found to improve the machine parts strength, while at the same time reducing frictional resistance, reducing the adhesion forces of the elements in contact and improving the corrosion resistance. Research limitations/implications: The method provides for making use of a versatile restoration material, which subsequently enables application of specific surface processing to improve the durability of the part being regenerated. Practical implications: It is a new concept of a hybrid layer, intended for machine parts regeneration.
EN
Purpose: The preliminary results of research on forming the aluminide coatings using CVD method were presented in the article. Design/methodology/approach: The coatings were obtained in low activity process on the surface of Rene 80 superalloy. The microstructure analysis and chemical composition analysis were performed applying different values of aluminizing process parameters. Findings: The authors present in the article the results of oxidation resistance analysis of aluminide coatings which were obtained on the surface of Rene 80 superalloy using various techniques. Research limitations/implications: The research results revealed the possibility of obtaining coatings by low activity aluminizing. Practical implications: This process can be used in aerospace industry to form oxidation resistant coatings. Originality/value: It was shown that the coating created during the CVD process was characterized by a good oxidation resistance at the temperature of 1100°C.
EN
Purpose: The main aim of this research was an investigation of both the coatings structure and mechanical properties deposited by the cathode arc evaporation physical vapor deposition (CAE-PVD) on sintered carbides and sialon tool ceramics substrates. Design/methodology/approach: The (Ti,Al)N and (Al,Ti)N coatings were investigated. Microstructure was characterized using the scanning and transmission electron microscopy. Phases composition analysis was carried out by the XRD and GIXRD method. Investigation of surface roughness was done. The mechanical properties were determined on basis of following research: a measurement of hardness using Vickres’s method, a measurement of roughness, adhesion using Scratch Test method. The cutting ability was defined on basis of technological cutting trials. Findings: The investigations made by use of the glow discharge optical emission spectrometer indicate the existence of the transition zone between the substrate material and the coating. The results shows that (Al,Ti)N coating presents good adhesion onto booth substrates and (Ti,Al)N coating presents good adhesion onto sintered carbides substrate. All the coatings demonstrate a high hardness. Research limitations/implications: The good adhesion (Al,Ti)N coating to sialon substrate is connecting with the same type of bonding in coat and sialon substrate. Originality/value: The good properties of the PVD gradient coatings make them suitable for various engineering and industrial applications.
EN
Purpose: The main aim of the this research was the investigation of the structure and the mechanical properties of the nanocomposite TiAlSiN, CrAlSiN, AlTiCrN coatings deposited by cathodic arc evaporation method onto hot work tool steel substrate. Design/methodology/approach: The surfaces’ topography and the structure of the PVD coatings were observed on the scanning electron microscopy. Diffraction and thin film structure were tested with the use of the transmission electron microscopy. The microhardness tests were made on the dynamic ultra-microhardness tester. Tests of the coatings’ adhesion to the substrate material were made using the scratch test. Findings: It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range of 11-25 nm, depending on the coating type. The coatings demonstrated columnar structure and dense cross-section morphology as well as good adhesion to the substrate. The critical load LC2 lies within the range of 46-54 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa). Practical implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the coatings. The very good mechanical properties of the nanocomposite coatings make them suitable in industrial applications. Originality/value: The investigation results will provide useful information to applying the nanocomposite coatings for the improvement of mechanical properties of the hot work tool steels.
8
Content available remote Comparison of the PVD coatings deposited onto plasma nitrited steel
EN
Purpose: The paper presents the structure, mechanical and tribological properties investigation results of the CrN, TiN and TiN/(Ti,Al)N anti-wear PVD coatings deposited onto substrates from the plasma nitrided hot work steel X37CrMoV5-1 type. Design/methodology/approach: Tests of the coatings’ adhesion to the substrate material were made using the scratch test. The surfaces’ topography and the structure of the PVD coatings were observed on the scanning electron microscopy. The microhardness tests were made on the dynamic ultra-microhardness tester. Wear resistance tests with the pin-on-disc method were carried out on the CSEM THT (High Temperature Tribometer). Findings: The duplex coatings demonstrate high hardness and very good adhesion. It was found out that the duplex TiN/(Ti,Al)N coating show the best adhesion to the substrate material. Practical implications: This investigation is to determine the usefulness of CrN and TiN, TiN/(Ti,Al)N PVD coatings deposition in order to improve the mechanical and tribological properties of hot work steels, particularly X37CrMoV5-1 type one. Originality/value: The investigation results will provide useful information to applying the duplex and nanostructure PVD coatings for the improvement of mechanical properties of the hot work tool steels. The very hard and antiwear PVD coatings deposited onto hot work tool steel substrate are needed.
9
Content available remote Technology validation of coatings deposition onto the brass substrate
EN
manufacturing metallic-ceramic coatings in the process of physical vapor deposition (PVD) on the CuZn40Pb2 brass substrate. The amount of layers applied to the substrate was adopted as the criterion for technology division, thus obtaining three technology groups for foresight researches. Design/methodology/approach: The carried out foresight-materials science researches included creating a dendrological matrix of technology value, a meteorological matrix of environment influence, a matrix of strategies for technologies, laying out strategic development tracks, carrying out materials science experiments which test the mechanical and tribological properties and the resistance to corrosion and erosion of brass covered with a varied number of layers applied using the method of reactive magnetron evaporation, as well as preparing technology roadmaps. Findings: High potential and attractiveness were shown of the analyzed technologies against the environment, as well as a promising improvement of mechanical and tribological properties and an increase of resistance to material corrosion and erosion as a result of covering with PVD coatings. Research limitations/implications: Researches pertaining to covering the brass substrate with PVD coatings is part of a bigger research project aimed at selecting, researching and characterizing priority innovative material surface engineering technologies. Practical implications: The presented results of experimental materials science researches prove the significant positive impact of covering with PVD coatings on the structure and mechanical properties, as well as the resistance to corrosion, erosion and abrasive wear of brass which leads to the justification of their including into the set of priority innovative technologies recommended for application in industrial practice, including in small and medium-size companies. Originality/value: The advantage of the article is the specification of the significance of the technology involving covering the brass substrate with mono- and multilayer PVD coatings against the environment, together with the recommended strategies of conduct, strategic development tracks and roadmaps of these technologies, taking into account the impact of the processes of applying these coatings onto the structure and the improvement of the properties of the tested surface layers.
10
Content available remote Investigation of PVD coatings deposited on the Si3N4 and sialon tool ceramics
EN
Purpose: The paper presents investigation results of the structure and properties of the coatings deposited by cathodic arc evaporation - physical vapour deposition (CAE-PVD) techniques on the Si3N4 and sialon tool ceramics. The Ti(B,N), Ti(C,N), (Ti,Zr)N and (Ti,Al)N coatings were investigated. Design/methodology/approach: The structural investigation includes the metallographic analysis on the scanning electron microscope. Examinations of the chemical compositions of the deposited coatings were carried out using the X-ray energy dispersive spectrograph EDS and using the X-ray diffractometer. The investigation includes also analysis of the mechanical and functional properties of the material: microhardness tests of the deposited coatings, surface roughness tests, evaluation of the adhesion of the deposited coatings. Findings: Deposition of the multicomponent gradient coatings with the PVD method, based on the B, Al and Zr solid secondary solution in the TiN titanium nitride, isomorphous with the alternating pure titanium nitride TiN, on tools made from nitride ceramics and sialon's ceramics, results in the increase of mechanical properties in comparison with uncoated tool materials, deciding thus the improvement of their working properties. Research limitations/implications: Ti(B,N), Ti(C,N), (Ti,Zr)N and (Ti,Al)N multicomponent and gradient coatings can be applied for cutting ceramic tools. Originality/value: Comparison of the wide
11
Content available remote Metallographic preparation of the conventional and new TBC layers
EN
Purpose: Verification of up-to-now used metallographic preparation of the TBC coating thermal barriers and adaptation of them to layers of new types, based on new ceramic compounds, sprayed on conventional high temperature creep resisting alloys by the APS method, is a purpose of this paper. New types of used ceramic powders are so called pyrochlores of a general formula RE₂Zr₂O₇. Design/methodology/approach: A scope of investigations comprised realization of a process of preparation of metallographic micro-sections, beginning from a cutting moment, through mounting, grinding and polishing. A standard method of preparation of micro-sections, typical for conventional layers was used and microstructural observation, from a point of view of presence of artefacts of mechanical origin was carried out. Findings: The carried out analysis allowed to compare methods of preparation of micro-sections and principles of preparation, used to assess the conventional TBC layers and relation them to barrier layers of new types. The carried out investigations showed that up-to-now used methods and procedures for the TBC layers, got by usage of conventional powders, are sufficient for layers of new types. Research limitations/implications: The carried out investigations suggest a necessity to verify the got results in a case of the TBC layers, sprayed by use of powders of pyrochlore structure of another type. Practical implications: The got results show a possibility to use up-to-now metallographic procedures for the TBC layers of new types. Originality/value: Information, concerning basic principles of microstructural assessment of layers of new types, sprayed by the APS method on high temperature creep resisting alloys, is an original value.
12
Content available remote Corrosion behavior of Ti6Al7Nb alloy after different surface treatments
EN
Purpose: The aim of the work was to work out methods to improve biocompatibility of the Ti6Al7Nb alloy by creating thick, porous layer which ensure corrosion resistance and which could be a base for biological reactions leading to improvements in the tissue bond with the implant. Design/methodology/approach: Surface were prepared using electropolishing, thermal oxidation, thermal oxidation in TiO2 powder, anodic oxidation in NaH2PO4, in NaOH and sparkle oxidation in H2SO4+H3PO4. The roughness was examined using MSP and LPM. Corrosion resistance tests were carried out in SBF with pH values characterized for neutral, inflammatory and stagnation state. Topographical features were determined using confocal microscope. Findings: The surface treatments guarantee a smooth surface (low value of Ra and RZDIN) or porous surface structure and high corrosion resistance. Topographical parameters of the layer can be altered according to the duration of that process. The corrosion resistance of the specimens anodically oxidized in NaOH and sparkle oxidized possessed high corrosion resistance in SBF also in SBF with low and high pH value. Research limitations/implications: For the layers, further mechanical, chemical, biological and composition examinations are planed. Practical implications: The paper presents different surface treatments and their influence on corrosion and topographical properties and it could be useful for implant producers to take into consideration one of these methods. Anodic oxidation is a very simple method to ensure high corrosion resistance of implants. Originality/value: The paper presented new approaches to the surface preparation by sparkle oxidation in the acids and anodic oxidation in NaH2PO4 and NaOH at different parameters which haven’t previously been used. There were proposed thermal oxidation in TiO2 powder that was not presented before. The paper compares corrosion resistance and topographical features of the Ti6Al7Nb modified by the new proposed and commonly used techniques.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.