Cold spraying as a low-temperature coating deposition method is intended for thermally sensitive materials. Due to its precise temperature control, it limits the formation of structural defects, and can therefore be easily applied to spray corrosion protective coatings made from metal or metal-ceramic powders. However, the formation of pure ceramic coatings with the use of cold spraying is still not so common. Titanium dioxide is one of the most interesting ceramics due to its photocatalytic properties. Nevertheless, these types of coating materials usually work in a corrosion favoring humid atmosphere. In the presented paper, amorphous TiO2 powder was deposited onto aluminum alloys and steel substrates and then submitted to potentiodynamic corrosion tests in a 3.5 wt.% NaCl solution. The as-sprayed coating showed phase transition from amorphous TiO2 to anatase, and also revealed porosity. As a result, electrolytes penetrated the coating and caused undercoating corrosion in the tested environment of an aqueous NaCl solution. The analysis of the potentiodynamic curves showed that the presence of the coating decreased corrosion potential on both substrates. It arose from the mixed phases of TiO2, which consisted of photocathode - amorphous material and photoanode - crystalline anatase. The phase mixture induced the galvanic corrosion of metallic substrates in the presence of electrolytes. Moreover, pitting-like corrosion and coating delamination were detected in aluminium alloy and steel samples, respectively. Finally, the corrosion mechanism of the titanium dioxide coatings was characterized and described.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The effects of surface preparation on the corrosion resistance of AISI 316L austenitic stainless steel were studied using the cyclic potentiodynamic polarization method. Grinding, mechanical polishing, and electropolishing were considered as the surface modifier methods. Regarding the surface roughness parameters, besides the conventional height parameter (Ra), the kurtosis (Rku) as the shape parameter was also considered to rationalize the pitting resistance for the first time. Based on the results of the Tafel extrapolation method, it was revealed that the uniform corrosion can be adequately correlated to Ra. However, the pitting resistance was found to mainly relate to the kurtosis, where by decreasing Rku (increased bluntness of topographic features), the pitting resistance enhanced. It was also found that a surface with Rku less than three (platykurtic) is resistant to pitting attack, where this surface can be obtained via electropolishing performed for an optimum time. The effect of electropolishing on the chromium content at the surface and its relation to the corrosion properties were also discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.