Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  potassium perchlorate
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The process of formation of the energy field by the explosion of a conical charge has been mathematically simulated. The features of the development of the energy field, depending on the point of initiation of the truncated cone explosive charge, were determined. The complex nature of the use of a charge at the bottom of a borehole with an intermediate conically-shaped detonator is discussed. Possible technological directions for using a charge with a complex shape are proposed.
EN
The results of studies on the thermal decomposition of potassium chlorate(VII) (PP) and the catalytic effects of copper, iron, nickel, titanium, magnesium, chromium and manganese oxides on the process are presented in this paper. The investigated oxides are ranked according to the magnitude of their catalytic effect; of these, CuO and МnО2 show the best catalytic performance. These oxides reduce the PP decomposition temperature from 919.3 K down to even 825.2 K. The share of the catalytic additive in the composition, required to achieve a desirable thermal decomposition profile, was found to be no more than 0.5 wt.%. The activation energy of the decomposition process was determined, using the modified Freeman and Carroll method for both neat PP and PP supplemented with MnO2; the addition of the catalyst produced a 48.8% decrease in the activation energy of thermal decomposition.
EN
The thermal decomposition characteristics of CL-20, potassium perchlorate (KP), lithium perchlorate (LP), a CL-20/KP mixture, and a CL-20/LP mixture were studied using thermogravimetry-differential scanning calorimetry (TG-DSC). The DSC curves for KP exhibited three endothermic peaks and one exothermic peak. The first two endothermic peaks correspond to the rhombic-cubic transition and the fusion of KP, respectively, the third indicates the fusion of KCl, while the exothermic peak is attributed to the decomposition of KP. The DSC curves obtained from LP showed four endothermic peaks and one exothermic peak. The first two endothermic peaks indicate the loss of adsorbed water and water of crystallization, while the third and fourth are associated with the fusion of LP and LiCl, respectively; the exothermic peak is due to the decomposition of LP. The presence of KP had little effect on the thermal decomposition of CL-20 while the addition of LP increased the temperature at which CL-20 exhibits an exothermic peak. In addition, the thermal decomposition of LP appeared to be catalyzed by the presence of CL-20.
EN
The burning rate of a solid composite propellant is one of its most important ballistic properties. To achieve a specified burning rate, transition metal oxides are used as burning rate modifiers. However, addition of transition metal oxides creates inertness in the composition. To avoid such inertness, an attempt has been made to incorporate potassium perchlorate (KP) as a burning rate modifier by partially replacing ammonium perchlorate (AP), up to the 10% level, and the composition was then studied in detail for its mechanical, thermal and ballistic properties. The data revealed that no change occurred in the case of the mechanical properties, however, the thermal stability decreased as the KP content was increased. The burning rate data revealed that on incorporation of 10% KP, there was an enhancement in the burning rate of up to 35% in comparison to the original composite propellant formulation, but beyond this no enhancement in burning rate was observed, indicating that the optimum content for KP in the composition had been reached.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.