Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  position errors
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the results of a study showing the accuracy of the determination of aircraft position coordinates based on the SPP (Single Point Positioning) solution in the GLONASS (Globalnaja Navigatsionnaya Sputnikovaya Sistema) system. For this purpose, the paper develops and implements an algorithm for the correction of position errors as parameters describing positioning accuracy. The proposed algorithm uses position error values determined for a single GNSS (Global Navigation Satellite Systems) receiver, which are joined in a linear combination to deter-mine the positioning accuracy of the aircraft. The algorithm uses linear coefficients as an inverse function of the number of GLONASS satellites being tracked by the GNSS receiver. The developed algorithm was tested for GLONASS satellite data recorded by Topcon HiPer Pro and Javad Alpha geodetic receivers, during a flight test carried out with a Cessna 172 aircraft around the military airport in Dęblin. Navigation calculations were carried out using RTKLIB v.2.4.3 and Scilab v.6.0.0 software. On the basis of the tests carried out, it was found that for single Topcon HiPer Pro and Javad Alpha receivers, position errors were up to ±11.4 m. However, by using the position error correction algo-rithm for both receivers, GLONASS positioning accuracy is up to ±3.6 m. The developed algorithm reduces position errors by 60-80% for all BLh (B-Latitude, L-Longitude, h-ellipsoidal height) coordinates. The paper shows the possibility of testing and implementing the proposed mathematical algorithm for the SPP solution in a GPS (GlobalPositioning System) navigation system. In this case the position errors from the GPS SPP solution range from -0.9 m to +0.9 m for all BLh coordinates. The obtained results showed that application the GLONASS and GPS system in air transport is important. The algorithm used in this work can also be applied to other global GNSS navigation systems (e.g. Galileo (European Navigation Satellite system) or BeiDou (Chinese Navigation Satellite System)) in air transport and navigation.
EN
This study presents a modified algorithm to determine the accuracy of GPS positioning in aerial navigation. To achieve this, a mixed model with measurement weights was used to determine the resultant value of accuracy of aerial vehicle positioning. The measurement weights were calculated as a function of the number of GPS tracking satellites. The calculations were performed on actual GPS measurement data recorded by two onboard GNSS receivers installed onboard a Cessna 172 aircraft. The flight test was conducted around the military airport in Dęblin. The conducted analyses demonstrated that the developed algorithm improved the accuracy of GPS positioning from 62 to 91% for horizontal coordinates and between 16-83% for the vertical component of the aerial vehicle position in the BLh ellipsoidal frame. The obtained test results show that the developed method improves the accuracy of aircraft position and could be applied in aerial navigation.
EN
The paper presents the results of research on the determination of the accuracy parameter for European Geostationary Navigation Overlay System (EGNOS) positioning for a dual set of on-board global navigation satellite system (GNSS) receivers. The study focusses in particular on presenting a modified algorithm to determine the accuracy of EGNOS positioning for a mixed model with measurement weights. The mathematical algorithm considers the measurement weights as a function of the squared inverse and the inverse of the position dilution of precision (PDOP) geometrical coefficient. The research uses actual EGNOS measurement data recorded by two on-board GNSS receivers installed in a Diamond DA 20-C airplane. The calculations determined the accuracy of EGNOS positioning separately for each receiver and the resultant value for the set of two GNSS receivers. Based on the conducted tests, it was determined that the mixed model with measurement weights in the form of a function of the inverse square of the PDOP geometrical coefficient was the most efficient and that it improved the accuracy of EGNOS positioning by 37%–63% compared to the results of position errors calculated separately for each GNSS receiver.
PL
W artykule przedstawiono metodykę pomiarów błędów kształtu i położenia osi otworów gniazd łożysk ramowych i panewek po ich zamontowaniu w gniazdach, opracowaną w oparciu o znaną metodę pomiaru współosiowości z użyciem wału kontrolnego. Opisano urządzenie pomiarowe, zagadnienia związane z doborem optymalnych wymiarów gabarytowych wału kontrolnego w zależności od wymiarów charakterystycznych mierzonego korpusu oraz sposób opracowania danych.
EN
In this article, there is presented a methodology of measuring the shape and the position errors of the axis bearing's bedplate bores and bearing shells after their assembling in bearing's bedplates. This methodology is elaborated in a base of coaxial measuring method with using of control shaft. There is described the measuring device, the means of measurements realization and problems connected with selection of optimal dimensions of control shaft dependence on characteristic dimensions of measuring case. At the end, there is presented the graphic interpretation of two stages elaboration process of measuring results that is realized in base of the least squares weighted method. Thanks to this method there was possible to mark out the searched parameters with estimation of their errors.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.