Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  population size reduction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Clustering based population size reduction method for evolutionary algorithms
EN
Nowadays, due to the growing dimensionality of optimisation problems, numerous studies are dedicated to reduction of metaheuristics computational requirements. Reducing size of the population during optimisation process is one of the promising research trends in the field of Evolutionary Algorithms. The purpose of this paper is to clarify the subject in form of a survey of population size reduction methods already proposed and to present preliminary results of a new method based on the clustering technique. Introduced method was implemented in the framework of Differential Evolution algorithm and verified on a set of real-parameter benchmark functions.
PL
Obecnie, ze względu na ciągły wzrost wymiarowości problemów optymalizacyjnych, liczne prace poświęcone są zmniejszeniu zapotrzebowania metaheurystyk na zasoby obliczeniowe. Jednym z obiecujących kierunków badań w przypadku algorytmów ewolucyjnych jest redukcja liczności populacji w trakcie procesu optymalizacji. Niniejszy artykuł ma na celu przybliżenie tej tematyki w formie przeglądu dotychczas zaproponowanych metod oraz prezentację wstępnych wyników autorskiej metody opartej na technice klasteryzacji. Przedstawiona metoda została zaimplementowana w strukturę algorytmu ewolucji różnicowej i zweryfikowana za pomocą standardowego zestawu funkcji rzeczywistych wielu zmiennych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.