Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  polymer nanoparticles
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigates a biomimetic method of deposition of bioactive calcium phosphate (CaP) layers on zirconium oxide substrates (ZrO2). The substrates contained polymer nanoparticles of poly(L-lactide-co-glycolide) (PLGA) obtained using the double emulsion method with solvent evaporation. Three antibiotics were encapsulated within the nanoparticles: bacitracin, gentamicin sulphate, and hydrophobic gentamicin, prepared with the use of the ion pairing method. Nanoparticles were immobilized on the substrates using the drop casting or the co-deposition method. The microstructure of the layers and the distribution of the nanoparticles were assessed by scanning electron microscopy. The nanoparticles size and their zeta potential were measured using the dynamic light scattering method. The release of drugs over time was examined and the antibacterial properties were evaluated in contact with Staphylococcus aureus bacteria using the spectrophotometric method and the Kirby-Bauer test. The results show that the layer deposition method is effective and allows to obtain homogenous bioactive coatings. Nanoparticles were agglomerated on the surface or homogenously distributed in the CaP coating, depending on the process used to immobilize them. The drug release profile and antibacterial properties can also be modified by changing the process – the drop casting method allows to obtain a coating with a stronger antimicrobial effect and faster drug release. Nanoparticles obtained by the double emulsion method with solvent evaporation have the required size to be immobilized between the CaP crystallites. Additionally, the encapsulation of drugs decreased the zeta potential of the nanoparticles, which was caused by the interaction of the drug and the polymer. Nanoparticles loaded with bacitracin showed weak antibacterial properties, as the growth inhibition zone in the Kirby-Bauer test was barely visible. Two other types of nanoparticles exhibited good antibacterial properties, exceptionally strong for those loaded with hydrophobic gentamicin
EN
Bone infections are a challenging problem as they may cause a permanent patient disability and even death. Additionally, their relapse rate is relatively high. The implantation of a local drug delivery system can be an effective way to fight bone infections. In this study, we present the process of surface bioactivation and immobilization of nanoparticles loaded with drugs. Our aim was to improve osseointegration of the ZrO2 surface by coating it with a bioactive layer containing poly(L-lactide-co-glycolide)(PLGA) nanoparticles (NPs) loaded with antibacterial drugs (gentamicin and bacitracin) using a biomimetic precipitation method. The ZrO2 substrates were prepared via pressing and sintering. The CaP-coating was obtained by immersing the substrates in ten-times concentrated simulated body fluid (10×SBF). NPs were prepared by the double emulsion method and the drug loading in NPs was assessed. Thus obtained NPs were applied on bioactivated ceramic substrates by the drop-casting method or by introducing them in the 10×SBF solution during the bioactivation process. The NPs were visualized using scanning electron microscopy (SEM). The NPs size and the Zeta potential were measured using dynamic light scattering (DLS) method. The microstructure of the coating and the efficiency of the NPs incorporation were tested by SEM. In this study, we proved the presented process to be an effective way to obtain biomaterials that could be used as drug delivery systems to treat bone infections in the future.
EN
Dextran-polycaprolactone nanoparticles were prepared and the influence of catalyst on particle diameter was investigated. Nanoparticles were synthesized by the simple one-pot reaction of spontaneous dextran modification with ɛ-caprolactone. Afterwards, nanoparticles were purified by dialysis, spray-dried and checked for cytotoxicity by the MTT assay. Prepared particles are a promising carrier for anticancer drug due to their biocompatibility and a narrow size distribution.
PL
Otrzymano nanocząstki dekstranowe z użyciem polikaprolaktonu jako czynnika zwijającego oraz zbadano wpływ ilości katalizatora na ich średnicę. Synteza składa się z prostej jednostopniowej reakcji, w czasie której zachodzi polimeryzacja ε-kaprolaktonu na łańcuchu dekstranowym, a następnie spontaniczne zwinięcie łańcucha w cząstkę. Nanocząstki oczyszczono poprzez dializę, suszono rozpyłowo i przebadano pod kątem cytotoksyczności testem MTT. Otrzymane nanocząstki są obiecującym nośnikiem dla leków przeciwnowotworowych ze względu na wąski rozkład średnic oraz biokompatybilność.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.