Purpose: The purpose of the paper is to present the results of own researches, including the study of the structure and the properties of new obtained single- and doublecomponent polycaprolactone polymer nanofibers as well as of composite nanofibers with and without silver precipitates produced by electrospinning including the results of biological research, proving the usefulness of the newly developed nano-engineering materials and their applicability in regenerative medicine, as well as tissue engineering. Design/methodology/approach: On the basis of the data available from the fundamental literature and based on the criteria of potential and attractiveness, polycaprolactone was selected for research from among a number of polymer materials, using a method of procedural benchmarking and weighted scores. The obtained nanomaterials undergone the following examinations to confirm the assumed aim of the work: infrared spectroscopy FTIR, Wide-angle X-ray scattering (WAXS), BET, Langmuir specific surface area and DTF porosity assessed with the gas adsorption method, in a transmission electron microscope (TEM), a scanning electron microscope (SEM), a fluorescence microscope, antibacterialness and antifungalness investigations and examinations of biological properties in vitro. Findings: The applicability of polymer fibers in medicine depends on biocompatibility and non-toxicity of the applied material, which is influenced by the chemical purity of the materials applied and the toxicity of the input solvents. The potential toxicity of nanofibers should therefore be eliminated, starting with selection of materials used for obtaining solutions. Many other factors fundamental for the quality and properties of polycaprolactone nanofibers need to be taken into account to create single- and doublecomponent and composite nanofibers. Practical implications: The obtained composite materials, due to their non-toxicity resulting from the components applied, including solvents, bacteriocidity and bioactivity, may find their applications in tissue engineering as membranes in controlled regeneration of bone tissue, as carriers of medicinal agents in bone surgery, as implantable surgical meshes and as scaffolds for a tissue culture. In turn, the composite core-shell nanofibers, by combining the antibacterial properties of the coating with bioactive properties of the core, are attractive materials for three-dimensional tissue scaffold. Such materials can be used as a carrier of medicine, a treatment of hard healing wounds, invasive surgery, neurosurgery, as substrate for the culturing of a retina, material to reconstruct nerves and in dentistry or oncology, to replace the natural tissue removed because of a cancer with the possibility of applying a therapeutic agent, e.g., an antibiotic or a medicine used in cancer therapies, released after the dissolution of the coating of nanofibers. Originality/value: The present paper is the original report from a personal own research and explains the concept and scope of own research of a new obtained single- and doublecomponent polycaprolactone polymer nanofibers as well as of composite nanofibers produced by electrospinning for application in regenerative medicine, the presentation of technological conditions and methodology of own research into polymer nanofibers, and above all very detailed description of the results of own investigations
Zastosowanie skaningowej mikroskopii elektronowej (SEM) pozwoliło na zobrazowanie struktury nanowłókien polimerowych otrzymanych techniką elektroprzędzenia. Na podstawie obrazów SEM przeprowadzono analizę morfologii i dystrybucji włókien, jak również wykonano pomiary średnicy włókien oraz wielkości porów. Te parametry są niezbędne do określania zależności między strukturą rusztowań komórkowych, a wzrostem komórek i tworzeniem tkanek.
EN
Scanning electron microscopy (SEM) was applied for visualization of the structure of polymer nanofibres produced by electrospinning method. The SEM images were used for analyses of the fibers' morphology and distribution. The fibers diameter and the size of pores were measured based on the SEM images. These parameters will be useful for determination of the correlation between the scaffold structure and cells growth.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.