This study investigated the influence of curing conditions and the inclusion of ground granulated blast furnace slag (GGBS) on the mechanical performance of ultra-high-performance strain-hardening cementitious composites (UHP-SHCC). Air- and wet-curing conditions were applied for 28 and 91 days, respectively. Compressive strength and direct tensile tests were performed, and the microstructure of the tested cementitious matrix and surface of the polyethylene (PE) fibers were inspected using scanning electron microscopy. The results showed that 3 months of wet-curing notably deteriorated the tensile performance of UHP-SHCC with or without GGBS as compared to those at the curing age of 1 month, whereas the 3 months of air-curing further enhanced the tensile performance. Therefore, the 3 months air-cured specimens, using binders consisting only of ordinary portland cement (OPC) or OPC with GGBS, could develop the highest tensile strength and strain capacity of up to 12.1 MPa and 9.1% or 13.6 MPa and 9.1%, respectively. The inclusion of GGBS led to a higher rate of stress development as well as tensile strength at the air-curing age of 3 months, resulting in the highest energy absorption capacity of 985 kJ/m3 measured in this study.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, the dynamic, compressive, and flexural behaviors of ultra-rapid-hardening mortar (URHM) containing 2% polyethylene fiber are investigated. The results confirm the robust strain-hardening behavior of URHM at an early age of 4 h. Its tensile strength, strain capacity, and g value at 4 h were found to be 7.3 MPa, 5.1%, and 297.5 kJ/m3, respectively. The compressive and flexural strength and toughness of URHM increased with the strain rate. A higher loading rate led to a greater increase in the strength; the rate sensitivity was higher during flexure compared to that during compression. The highest dynamic increase factor (DIF) of the compressive strength was 1.75 up to a strain rate of 115/s; the highest DIF of the flexural strength was 3.34 up to a strain rate of 96/s. Its deflection-hardening behavior was converted to deflection-softening behavior under impact loads having a potential energy of 392 J or greater. Furthermore, the greater potential energy led to a lower energy dissipation rate, and more energy remained in the system. The rate sensitivity of the URHM under compression was similar to that of other fiber-reinforced concretes; however, its flexural strength was less sensitive to the strain rate than that of the others.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.