Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  polyester-glass waste
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Polyester-glass composites are widely used in many industries, in various types of constructions, including dynamically loaded ones. This article examines the influence of the content of a glass-polyester recycled additive on the strength properties of layered composites. The recyclate was polyester-glass waste, which was pre-crushed and then milled into the appropriate fractions. Manual laminating technology was used to make the materials. The composite materials were made with a waste content of 0%, 10%, 20% and granulations of ≥ 1.2 mm and ≥ 3 mm. Samples for testing were prepared in accordance with the PN-EN ISO 179-1: 2010E standard (Plastics – Charpy Impact Assessment – Part 1: Non-instrumental impact test). Impact tests of the samples were performed using the Charpy method with the Zwick Roell RKP450 swinging hammer. The test results showed that the addition of polyester-glass recyclate, its content %, and its granulation size, have an impact on the composite resistance to loads in dynamic tests.
EN
Glass fibre reinforced composites are used in many branches of industry. Polyester-glass laminates serve as structural material in shipbuilding (e.g. hulls of units, superstructures), in railways, automotive (e.g. elements of car bodies and interior fittings, roofs of wagons, cisterns) or aviation (e.g. aircraft fuselages, fuel tanks, completion beaks and ballasts). Factors affecting the increase of their use include low specific gravity, optimal strength properties, corrosion resistance. This is associated with a large amount of post-production and post-use waste. The recycling problem of these materials remains unresolved. The article presents the technology of processing polyester-glass waste in order to obtain a recycle with a specific granulation. The selected technology for the production of layered composites with reinforcement in the form of recycle is described. For testing, granulation was selected for 1.2 and 3 mm, as well as content: 0%, 10%, 20% and 30%. Using the water-cutting method, samples were prepared according to the standard static tensile test for plastics. The tests were carried out using a universal testing machine as well as an extensometer for samples with granulation of 1.2 mm and 3 mm, as well as the selected recycled percentage. Obtained results of the research indicated that granulation as well as content affects the strength properties of composites. As the granulation increases, at the same content, the material gains less deformation. The increase in the amount of the recycle reduces the strength properties of the material, and also due to the decrease in the deformation value - the material becomes brittle.
EN
In this article the problem of plastic recycling, and in particular waste polyester-glass, has been described. In brief, the technology for the production of new composite materials by hand, made by the contact method, using the matrix filling in the form of polyester-glass waste coming from worn-out laminates used in the construction of ship hulls. The waste used was a powdered mixture of resin particles, glass fibers, and composite particle agglomerates. A method for producing composite panels with a recyclate content of between 10% and 30% was carried out. The samples were then manufactured according to the requirements of the standard, i.e. PN-EN ISO 527-4_2000P. Samples obtained from the test plates were subjected to a static stretch test, to verify the impact of the integrated wastes on the mechanical properties of the composite. Photographs of the structure of the obtained material have also been presented. These photos showed significant differences in the composition of the resulting composites determined by the amount of waste material used. Analysis of the results indicated that increasing the amount of recyclate reduces the value of the material’s strength limit and also reduces the plasticity of the material. This article has provided an introduction to more comprehensive research on the recycling of plastics.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.