Due to their advantages, non-homogeneous Poisson processes have so far been used extensively in a variety of practical applications. They do, however, also have important application-related limits. A novel counting process model named the Poisson–XLindley Process was created to get around these restrictions. We shall demonstrate that this new model lacks such constraints. These fundamental stochastic properties of the process are derived. Additionally, the dependence structure is examined along with the new idea of positively dependent increments. Generic versions of several of the features derived in this article will be offered. This is an innovative concept related to counting processes, which allows the probability function to be described explicitly. It is one of its major contributions
PL
Niejednorodne procesy Poissona są szeroko stosowane w modelowaniu chociaż mają istotne ograniczenia jesli chcemy uzyskać wysoką zgodność modelu z zjawiskiem. W celu usunięcia tych problemów wprowadzamy zmodyfikowany opis procesu liczącego, nazwany Procesem Poissona XLindleya. W pracy pokazujemy przełamanie istotnych ograniczeń niejednorodnego procesu Poissona przez nowy model. Wyprowadzono podstawowe właściwości probabilistyczne tego procesu, badana jest równiez struktura zależności przyrostów z wykorzystaniem idei przyrostów dodatnio zależnych. W pracy pokazano ogólną wersję funkcjonałów od tego procesu. Ta innowacyjna koncepcja procesu liczącego, pozwalająca na jawny formuły opisujące rozkłady prawdopodobieństwa, jest jednym z jej głównych walorów pracy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.