Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  podziemny magazyn wodoru
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł przedstawia wyniki badań nad doszczelnieniem matrycy kamieni cementowych otrzymanych z zaczynów cementowych przeznaczonych do podziemnych magazynów wodoru w kawernach solnych. W recepturach zaczynów cementowych została zwiększona ilość dodatku mikrocementu oraz podjęto próbę zastosowania wybranych rodzajów nanomateriałów. Receptury cementowe opracowane zostały w INiG – PIB w Laboratorium Zaczynów Uszczelniających. Badania przeprowadzono dla temperatury 25°C i ciśnienia 10 MPa. W badanych zaczynach cementowych jako spoiwo wiążące zastosowano cement wiertniczy G. Zaczyny cementowe sporządzano na solance o pełnym nasyceniu o gęstości 1200 kg/m3 ze względu na bezpośrednią obecność soli w otworze. Do solanki dodawano kolejno środki: odpieniający, upłynniający i obniżający filtrację oraz nanomateriały. Pozostałe składniki: mikrocement, gips modelowy oraz cement mieszano ze sobą i wprowadzano następnie do wody zarobowej. W przypadku każdego zaczynu cementowego wykonywano badania parametrów technologicznych takich jak: właściwości reologiczne, gęstość, rozlewność, odstój wody oraz czas gęstnienia zaczynu. Przeprowadzano również badania wytrzymałości na ściskanie po 7 dniach oraz po 1 i 6 miesiącach, a także pomiar porowatości stwardniałych zaczynów cementowych po 6 miesiącach deponowania w pełni nasyconej solance. Opracowane zaczyny cementowe charakteryzowały się dobrymi parametrami reologicznymi oraz zerowym odstojem wody. Gęstości zaczynów cementowych wahały się w przedziale od 1910 kg/m3 do 1940 kg/m3 . Wszystkie zbadane stwardniałe zaczyny cementowe charakteryzowały się zwartą mikrostrukturą o niskiej zawartości makroporów. Udział porów o średnicy powyżej 10 000 nm wyniósł od 1,3% do 3,2% ilości wszystkich porów. Natomiast udział porów o średnicy poniżej 100 nm w całej matrycy stwardniałego zaczynu cementowego wyniósł od 94,3% do 97,5%. Dodatek większej ilości mikrocementu oraz wprowadzenie nanokomponentów do receptur zaczynów cementowych spowodowały wzrost wytrzymałości na ściskanie oraz obniżenie porowatości kamieni cementowych.
EN
The article presents the results of research on the sealing of the matrix of cement stones derived from cement slurries, specifically designed for underground hydrogen storage in salt caverns. This study involved increasing the amount of microcement in cement slurry mixes and experimenting with selected types of nanomaterials. Laboratory tests of cement slurries were conducted at the Oil and Gas Institute – National Research Institute, under controlled conditions of 25°C and 10 MPa. Cement slurries were prepared on the basis of class G oil-well cement. Cement slurries were prepared on fully saturated brine with a density of 1200 kg/m3 reflecting the direct presence of salt in the wellbore. The agents added into the brine included defoamers, liquefying agents, fluid loss control additive and nanocomponents. The other ingredients – microcement, model gypsum and cement – were mixed together and then added to the mixing water. The cement slurries were tested for rheological parameters, density, free water, fluidity, filtration and thickening time. Compressive strength tests were conducted at intervals of 7 days, 1 month and 6 months, along measurement of porosity of hardened cement slurry after 6 months of depositing fully saturated brine. The developed cement slurries exhibited favorable rheological parameters and no free water. The densities of tested slurries ranged from 1910 kg/m3 to 1940 kg/m3 . All hardened cement slurries tested were characterized by a compact microstructure with a low content of macropores. The proportion of pores with a diameter above 10,000 nm ranged from 1.3 to 3.2% of all pores. Whereas, the proportion of pores with a diameter below 100 nm in the entire cement stone matrix ranged from 94.3 to 97.5%. The addition of a larger amount of microcement and nanocomponents to the cement slurry mixes resulted in an increase in compressive strength and a decrease in the porosity of cement stones.
PL
Ograniczenie emisji gazów cieplarnianych i zwiększenie udziału energii elektrycznej z odnawialnych źródeł energii (OZE) w miksie energetycznym stanowią ogromne wyzwanie dla większości światowych gospodarek, w tym Polski. Ze względu na specyfikę produkcji energii z OZE – jej rozwój na dużą skalę nie jest możliwy bez rozwiniętych systemów wielkoskalowego magazynowania i bilansowania energii. Wodór może być wykorzystywany w nieuniknionej transformacji energetycznej jako źródło, nośnik lub magazyn (bufor) energii, stąd też dynamika rozwoju technologii wodorowych stale przybiera na sile. Istotną kwestią dla zapewnienia bezpieczeństwa podziemnego magazynu i ograniczenia ryzyka związanego z ucieczką/stratą magazynowanego wodoru jest uszczelnienie otworów wiertniczych z wykorzystaniem szczelnego zaczynu cementowego, tworzącego dobrej jakości kamień cementowy. W niniejszej pracy podjęto próbę oceny szczelności stwardniałych zaczynów cementowych opracowanych do celów uszczelniania odwiertów w podziemnych magazynach wodoru (PMW) zlokalizowanych w sczerpanych złożach gazu ziemnego. W badaniach rejestrowano natężenie przepływu wodoru, co pozwala na ocenę porównawczą poszczególnych próbek w kierunku najniższych wartości przepływu, odpowiadających najwyższej szczelności. Pomiary wykonywano w różnych warunkach ciśnienia (wysokie ciśnienie porowe, niskie ciśnienie porowe, wysokie ciśnienie różnicowe, niskie ciśnienie różnicowe) i temperatury (60°C, temperatura pokojowa). Ustalenie przepuszczalności stwardniałych zaczynów cementowych jest problematyczne ze względu na specyficzny charakter ośrodka porowatego, który to cechuje się niestabilnością parametrów w czasie i w trakcie suszenia ulega trwałym uszkodzeniom.
EN
Reducing greenhouse gas emissions and increasing the share of electricity from renewable energy sources (RES) in the energy mix is a huge challenge for most global economies, including Poland. Due to the specific nature of RES energy production, its large-scale development is not possible without developed large-scale energy storage and balancing systems. Hydrogen can be used in the inevitable energy transition both as a source, carrier or storage (buffer) of energy, hence the dynamics of hydrogen technology development is steadily gaining momentum. An important issue to ensure the safety of underground storage and to reduce the risk of escape/loss of stored hydrogen is the sealing of boreholes using a hydrogen tight cement. The present study attempts to assess the tightness of hardened cement slurries developed for sealing boreholes in underground hydrogen storage facilities located in depleted natural gas fields. Hydrogen flow rates were measured, allowing a comparative assessment of individual samples towards the lowest flow rates corresponding to the highest tightness. Determining the permeability of hardened cement slurries is problematic due to the specific nature of the porous medium, which is characterised by instability of parameters over time and is permanently damaged during drying.
PL
Uwarunkowania ekologiczne, ale także polityczne, a w ostatnim czasie również ekonomiczne związane z galopującym wzrostem cen surowców energetycznych, jak i samej energii, stały się powodem silnie rosnącego zainteresowania zarówno wydajnymi źródłami energii, jak też „czystymi” paliwami, w tym wodorem. Wprowadzenie wodoru do powszechnego użytku w transporcie i energetyce wiąże się jednak z szeregiem problemów natury technicznej, często rozwiązanych w skali laboratoryjnej, jednak ciągle oczekujących na wdrożenia. Katalog zagadnień związanych z wykorzystaniem wodoru jako paliwa do powszechnego użytku jest bardzo długi, jednak w niniejszej pracy skupiamy się na przybliżeniu problematyki dotyczącej przechowywania wodoru. Jako istotne omówione są kwestie metod sprężania, skraplania i lokalnego wytwarzania wodoru, a także przechowywania go i transportu w postaci związków chemicznych o różnej budowie. Pośród omówionych związków znalazły się między innymi wodorki metali o wysokiej aktywności chemicznej, borowodorek sodowy, amidoborany. Jako osobna grupa organicznych nośników wodoru mogą być rozpatrywane związki takie jak kwas mrówkowy, toluen, naftalen, a także inne mogące ulegać odwracalnemu uwodornieniu, jak pary aren–cykloalkan. Naświetlone zostały także problemy technologiczne związane z wykorzystaniem wspomnianych związków w przechowywaniu i transporcie wodoru. Istotną kwestię stanowią także metody wielkoskalowego magazynowania tego gazu, dlatego też w artykule zasygnalizowane zostały zagadnienia dotyczące problematyki podziemnych magazynów gazu (PMG) wykorzystywanych do magazynowania wodoru czy wreszcie – magazynowania go w istniejącej infrastrukturze przesyłowej. Ponadto przybliżony został zarys najistotniejszych uwarunkowań prawnych oraz strategii dotyczących wodoru, zarówno w skali kraju, jak i wspólnoty europejskiej.
EN
Environmental, political, and currently also economic factors related to the galloping increase in prices of raw materials and energy have become the reason for the growing interest in both efficient energy sources and so-called “clean” fuels, including hydrogen. However, the introduction of hydrogen for widespread use in transport and energy sectors is associated with several technical difficulties and challenges, often solved at the laboratory scale but still awaiting industrial implementation. The catalogue of issues related to the introduction of hydrogen as a fuel of general use is quite extensive. However, this paper focuses on explaining the problems associated with hydrogen storage. These include methods of hydrogen compression, liquefaction and in situ production as well as its storage and transportation in the form of various chemical compounds. The compounds discussed include metal hydrides of high chemical activity, sodium borohydride, and amidoboranes. As a separate group of organic hydrogen carriers compounds such as formic acid, toluene, and naphthalene as well as other capable of reversible hydrogenation such as arene-cycloalkane pairs, can also be considered. The paper also discusses technological issues related to the use of these compounds. The issue of customization and development of underground gas storage (UGS) towards hydrogen storage and storing it in the existing transmission infrastructure and the methods critical for a large-scale storage of this gas are also covered. Furthermore, an overview of the most critical legal regulations and strategies for hydrogen on the national and European Community level is provided.
PL
Artykuł przedstawia wyniki badań nad opracowaniem zaczynów cementowych przeznaczonych do podziemnego magazynowania wodoru w kawernach solnych. Receptury cementowe opracowane zostały w Instytucie Nafty i Gazu – Państwowym Instytucie Badawczym w Laboratorium Zaczynów Uszczelniających. Badania przeprowadzono dla temperatury 45°C i ciśnienia 10 MPa. W badanych zaczynach cementowych jako spoiwo wiążące zastosowano cement wiertniczy G. Zaczyny cementowe sporządzano na solance o pełnym nasyceniu o gęstości 1,2 g/cm3 ze względu na bezpośrednią obecność soli w otworze. Do solanki dodawano kolejno środki: odpieniający, upłynniający i obniżający filtrację. Pozostałe składniki: mikrocement, gips modelowy oraz cement mieszano ze sobą i wprowadzano następnie do wody zarobowej. W przypadku każdego zaczynu cementowego wykonywano badania parametrów technologicznych, takich jak: właściwości reologiczne, gęstość, rozlewność, odstój wody oraz czas gęstnienia zaczynu. Przeprowadzano również badania wytrzymałości na ściskanie po 2 dniach oraz po 3, 5 i 8 miesiącach, a także pomiar porowatości stwardniałych zaczynów cementowych po 8 miesiącach deponowania we w pełni nasyconej solance. Na opracowanych zaczynach wykonano również badanie szczelności stwardniałego zaczynu cementowego dla wodoru. Opracowane zaczyny cementowe charakteryzowały się dobrymi parametrami reologicznymi oraz zerowym odstojem wody. Gęstości zaczynów cementowych wahały się w przedziale od 1900 kg/m3 do 1910 kg/m3 . Wszystkie zbadane stwardniałe zaczyny cementowe charakteryzowały się zwartą mikrostrukturą o niskiej zawartości makroporów. Udział porów o średnicy powyżej 10 000 nm wyniósł od 1,9% do 2,5% ilości wszystkich porów. Natomiast udział porów o średnicy poniżej 100 nm w całej matrycy stwardniałego zaczynu cementowego wyniósł od 95,9% do 96,9%. Średni strumień objętości przepływu wodoru przez stwardniały zaczyn cementowy miał wartość od 0,686 cm3 /min do 6,85 cm3 /min. Dla ustabilizowanych wartości strumienia objętości przepływu obliczono współczynniki przepuszczalności. Średnie wartości współczynnika przepuszczalności dla stwardniałego zaczynu cementowego wynosiły od 0,0000281 mD do 0,000284 mD, co świadczy o dobrej szczelności uzyskanych stwardniałych zaczynów cementowych.
EN
The article presents the results of research on the development of cement slurries intended for the underground storage of hydrogen in salt caverns. Laboratory tests of cement slurries were carried out at the Oil and Gas Institute – National Research Institute. The tests were carried out at a temperature of 45°C and a pressure range of 10 MPa. Cement slurries were prepared on the basis of class G drilling cement. The cement slurries were prepared on fully saturated brine with a density of 1.2 g/cm3 due to the direct presence of salt in the well. The following agents were added to the brine: defoamers, liquefying agents and fluid loss control. The remaining ingredients –:microcement, model gypsum and cement – were mixed together and then added to the mixing water. The cement slurries were tested for rheological parameters, density, free water, fluidity, filtration and thickening time. Compressive strength tests were carried out after 2 days and 3, 5 and 8 months as well as measurement of porosity of hardened cement slurry after 8 months of depositing fully saturated brine. For 3 compositions, a test of the tightness of the cement stone for hydrogen was also carried out. The developed cement slurries were characterised by good rheological parameters and no free water. The densities of tested slurries ranged from 1900 kg/m3 to 1910 kg/m3 . All tested hardened cement slurries featured a compact microstructure with a low content of macropores. The share of pores with a diameter above 10 000 nm ranged from 1.9 to 2.5% of all pores. On the other hand, pores with a diameter below 100 nm in the entire cement stone matrix ranged from 95.9 to 96.9%. The average hydrogen volumetric flow rate through the cement stone ranged from 0.686 cm3 /min do 6.85 cm3 /min. Permeability coefficients were calculated for stabilised values of flow rate. The average value of the permeability coefficient for cement stone ranged from 0.0000281 mD to 0.000284 mD, which proves that the obtained hardened cement slurries are sufficiently tight.
PL
W artykule podjęto próbę oceny możliwości magazynowania w sczerpanych złożach gazu ziemnego zapadliska przedkarpackiego mieszaniny składającej się z gazu ziemnego (ok. 90%) i wodoru (do 10%). Problem magazynowania wodoru pojawi się w Europie, a zapewne też i w Polsce w nieodległym czasie, gdyż zgodnie z dyrektywą wodorową ogłoszoną przez UE w 2020 r. wodór produkowany z nadwyżek energii wytwarzanych przez OZE będzie stopniowo zastępował paliwa kopalne. Część wodoru będzie zużywana na bieżące potrzeby, a część będzie magazynowania w zbiornikach napowierzchniowych oraz podziemnych. Podziemne magazyny wodoru (PMW) będą budowane w kawernach solnych oraz w sczerpanych złożach gazu ziemnego. Istniejące podziemne magazyny gazu (PMG) działają w Polsce m.in. w rejonie zapadliska przedkarpackiego – są to np. PMG Husów i PMG Brzeźnica, w których gaz jest magazynowany w piaskowcowych poziomach miocenu. W tym rejonie występuje też cały szereg sczerpanych horyzontów gazowych, które mogą być wykorzystane w przyszłości jako potencjalne magazyny gazu ziemnego i wodoru. Dla potrzeb artykułu wybrano jeden z takich poziomów zbiornikowych, reprezentujący złoże mioceńskie, i przeprowadzono szczegółową analizę jego parametrów geologiczno-złożowych istotnych dla magazynowania wodoru. Zestaw analizowanych parametrów sprecyzowano na podstawie literatury oraz przyjętych ogólnie kryteriów wyboru struktury na potrzeby utworzenia PMG. Analizowane parametry skał magazynowych i uszczelniających dotyczyły: ich składu mineralogicznego i petrofizycznego, składu chemicznego gazu rodzimego oraz wód złożowych, oceny parametrów petrofizycznych skał, budowy strukturalnej poziomów zbiornikowych i uszczelniających, warunków mikrobiologicznych złoża. Dokonano też oceny zjawisk fizycznych, które będą lub mogą być efektem magazynowania wodoru, takich jak np.: proces dyfuzji, mieszanie się gazów i ich ewentualna segregacja oraz możliwość tworzenia się „języków” i „palców wodorowych”. W artykule podano również przykłady magazynów wodoru działających na świecie. Szczegółowo przedstawiono wyniki doświadczalnego podziemnego magazynowania wodoru w Austrii oraz Argentynie. W obu przypadkach projekty były realizowane w ostatnich latach. Szczególnie ważny dla niniejszej pracy był projekt austriacki Underground Sun Storage zrealizowany w Pilsbach w Austrii. Projekt ten jest istotny, gdyż proces magazynowania wodoru został przeprowadzony w podobnych do obszaru zapadliska przedkarpackiego utworach molasowych. Wyniki analiz wytypowanych poziomów zbiornikowych dają podstawę do pozytywnej rekomendacji sczerpanych złóż gazu ziemnego na obszarze zapadliska do celów podziemnego magazynowania wodoru. Jednocześnie jednak zwraca uwagę fakt małej liczby badań istotnych dla podjęcia decyzji o magazynowaniu wodoru w strukturach sczerpanych złóż gazu, dlatego konieczne będzie przed wydaniem takiej decyzji zaplanowanie i przeprowadzenie niezbędnego zakresu badań i analiz. Innym bardzo istotnym elementem będzie też dokonanie przeglądu i analizy stanu technicznego istniejących odwiertów, w tym stanu ich zacementowania oraz analizy materiałoznawczej.
EN
This paper presents the possibility of storing a mixture of natural gas (approx. 90%) and hydrogen (up to 10%) in depleted natural gas fields in the Carpathian Foredeep. The problem of hydrogen storage will arise in Europe, and probably also in Poland, in the near future. In accordance with the hydrogen directive announced by the EU in 2020, hydrogen produced from surplus energy from renewable energy sources is going to gradually replace fossil fuels. A part of the hydrogen will be used for current needs, and some will be stored in the surface and underground reservoirs. Underground hydrogen storage (UHS) facilities will be built in salt caverns and in depleted natural gas fields. The underground gas storage (UGS) facilities operate in Poland, e.g. in the area of the Carpathian Foredeep, (for example UGS Husów and UGS Brzeźnica), where gas is stored in the Miocene sandstone levels. This region is reach in depleted gas horizons that may be used in the future as a potential natural gas and hydrogen storage facilities. In this article, one of such reservoir horizons, representing the Miocene gas field, was selected, and its detailed analysis of geological and reservoir parameters, important for hydrogen storage, was carried out. The set of analyzed parameters was specified on the basis of the literature and generally accepted criteria for selecting a structure for UGS facilities. The analyzed parameters of storage and sealing rocks concerned: their mineralogical and petrophysical composition, chemical composition of native gas and reservoir waters, evaluation of petrophysical parameters of rocks, structure of reservoir and sealing levels, as well as microbiological conditions of the deposit. A physical phenomena that will or may be the effect of hydrogen storage, such as the diffusion process, mixing of gases and their possible segregation, and the possibility of the formation of hydrogen “tongues and fingers” were also assessed. The article also presents examples of hydrogen storage facilities operating in the world. The results of experimental underground hydrogen storage in Austria and Argentina are presented in details. In both cases, the projects were implemented in recent years. The Austrian project Underground Sun Storage realized in Pilsbach, Austria, was particularly important for this work. This project is significant, because the hydrogen storage process was carried out in molasses formations similar to those of the Carpathian Foredeep. The results of the analyses of the selected reservoir levels support a positive recommendation of the depleted natural gas fields in the area of the Carpathian Foredeep for the purpose of the underground hydrogen storage. However, due to the fact that there is a small amount of research relevant to making a decision on the hydrogen storage in the structures of depleted gas fields, it is necessary to plan and conduct more research and analyses. Another very important element will be the review and analysis of the technical condition of the existing wells, including the condition of their cementing and material science analysis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.