Artykuł przedstawia wyniki wstępnych badań nad opracowaniem zaczynów cementowych nadających się do uszczelniania rur okładzinowych w odwiertach udostępniających kawerny solne przeznaczone do podziemnego magazynowania wodoru. Receptury cementowe opracowane zostały w INiG – PIB, w Laboratorium Zaczynów Uszczelniających. Badania przeprowadzono dla temperatur w zakresie 25–60°C i ciśnień 10–30 MPa. W badanych zaczynach cementowych jako spoiwo wiążące zastosowano cement wiertniczy G. Zaczyny cementowe sporządzano na solance o pełnym nasyceniu, o gęstości 1,2 g/cm3 , ze względu na bezpośrednią obecność soli w otworze. Do solanki dodawano kolejno środki: odpieniający, upłynniający, przyspieszający wiązanie i obniżający filtrację. Pozostałe składniki: mikrocement, gips modelowy oraz cement mieszano ze sobą i wprowadzano następnie do wody zarobowej. Dla każdego zaczynu cementowego wykonywano badania parametrów reologicznych, określano gęstość i rozlewność. Mierzono odstój wody i czas gęstnienia zaczynu. Wykonywano również badania wytrzymałości na ściskanie po 2, 7, 14 i 28 dniach oraz pomiar porowatości kamieni cementowych po 28 dniach. Po przeanalizowaniu wyników badań porowatości kamieni cementowych oraz pozostałych parametrów zaczynów i kamieni cementowych, do badania przepuszczalności kamienia cementowego dla wodoru wytypowano 1 próbkę mającą najkorzystniejsze parametry. Opracowane zaczyny cementowe charakteryzowały się dobrymi parametrami reologicznymi oraz zerowym odstojem wody. Gęstości zaczynów cementowych wahały się w przedziale od 1,91 g/cm3 do 1,93 g/cm3 . Wszystkie badane próbki kamieni cementowych wraz z upływem czasu odznaczały się wzrostem parametrów mechanicznych. Rozkład porów kamieni cementowych charakteryzował się niewielką ilością porów o średnicy powyżej 100 nm, co świadczy o ich zwartej strukturze. Przedstawione badania pozwolą zdobyć wiedzę na temat zaczynów cementowych przeznaczonych do uszczelniania rur w warunkach podziemnego magazynowania wodoru w kawernach solnych. Wykonane testy stanowią wstęp do dalszych badań nad opracowaniem optymalnych rodzajów zaczynów cementowych przeznaczonych do podziemnego magazynowania wodoru w kawernach solnych.
EN
The article presents the results of preliminary research on the development of cement slurries intended for the underground storage of hydrogen in salt caverns. Laboratory tests of cement slurries were carried out at the Oil and Gas Institute – National Research Institute. The tests were carried out in the temperature range of 25–60°C and the pressure range of 10–30 MPa. Cement slurries were prepared on the basis of class G drilling cement. Cement slurries were prepared using fully saturated brine with a density of 1.2 g/cm3 due to the direct presence of salt in the wellbore. The following agents were added to the brine: defoamers, liquefying agents, accelerating setting and fluid loss control. The remaining ingredients: microcement, model gypsum and cement were mixed together and then added to the mixing water. The cement slurries were tested for density, free water, fluidity, rheological parameters, filtration and thickening time. Compressive strength tests were carried out after 2, 7, 14 and 28 days, while porosity after 28 days. The developed cement slurries were characterized by good rheological parameters and no free water. The densities of tested slurries ranged from 1,91 g/cm3 to 1,93 g/cm3 . All the tested samples of cement stones showed an increase in mechanical parameters with time. The pore distribution of cement stones was characterized by a small number of pores with diameters greater than 100 nm, which proves their compact structure. This research will provide knowledge on cement slurries intended for underground hydrogen storage in salt caverns and constitute initial research in this direction.
The paper has the following targets: the analysis of the geological model, the determination of the optimum storage and exploitation conditions and the evaluation of the possibilities of increasing the storage capacity of the reservoir.
PL
W artykule dokonano analizy modelu geologicznego, a następnie określono optymalne warunki składowania i eksploatacji PMG. W dalszej kolejności oszacowano możliwości zwiększenia zdolności magazynowej złoża.
Poland has the limited gas and oil resources. Main hydrocarbons supplies are delivered to Poland mostly from Russia by oil and gas pipelines. Very large length of these pipelines as well as the local considerable wearing of devices induces the necessity of reserves storage. Geological conditions in Poland and a considerable quantity of exhausted gas deposits enabling in nearest years to the construction of underground gas storages (UGS) suggest the new investments in this sector of petroleum industry. Capacity amount of present active UGS is 1.58 x 10exp.9 mexp.3 but after finalizing of storages their volume will achieve 2.8 x 10exp.9 mexp.3. Special attention is paid to the Wierzchowice UGS (the biggest one in Poland) and to caverns leaching within the Zechstein salts cavern underground gas storages (CUGS) Mogilno and Kosakowo. Reservoirs of cavern type (expensive under construction) are a very efficient, modern source of gas system supply, particularly in periods of the seasonal demand fluctuations for gas - a very high during the winter season in the central and the northern Europe. Only caverns in salts allow to store both the gas and the liquid hydrocarbons. Construction of the UGS refers mostly to exhausted gas fields, discovered and exploited by the Polish Oil and Gas Company. Experience and capital of the state company located it as a leader in Poland in the field of construction and exploitation of underground storages. Their construction has the minimum influence on the environment. Utilization of exhausted hydrocarbons deposits (often with the existing mining infrastructure) is not almost at all troublesome for a local population and the environment and it offers considerable practical and economic benefits. The economical boom in the oil and gas market during last years creates new challenges for construction and exploitation of hydrocarbons underground storages.
W wielu ośrodkach zajmujących się wykorzystaniem złóż soli kamiennej do budowy podziemnych magazynów panuje przekonanie o zdolności soli do przenoszenia znacznych obciążeń z równoczesnym zachowaniem ciągłości, nawet przy dużych odkształceniach. Testy trójosiowego ściskania wykazują, że w całym zakresie naprężeń i temperatur, towarzyszących eksploatacji podziemnych kawern, w przestrzennym stanie naprężenia istnieje wyraźna granica pomiędzy ściśliwością a dylatancyjną zmianą objętości soli. Wynikiem przyrostu nieodwracalnych odkształceń objętościowych jest gwałtowny wzrost prędkości pełzania, potęgowo zależnej od wielkości naprężeń i prowadzący do kruchego zniszczenia. Własności odkształceniowe soli, określone granicą względnego przyrostu objętości i prędkością pełzania zależą także od niewielkich zmian temperatury, przy zachowanej wytrzymałości doraźnej. Na podstawie analizy warunków towarzyszących eksploatacji podziemnego magazynu gazu, w artykule opisano laboratoryjne procedury badawcze w testach trójosiowego ściskania niezbędne do analizy zjawisk geomechanicznych zachodzących w otoczeniu komór magazynowych. Omówiono także na wybranych przykładach wykorzystanie wyników badań do sformułowania naprężeniowego kryterium długotrwałej stateczności górotworu solnego.
EN
In many research centres concerning with rock salt utilization for underground storage there is confidence of ability to load resistance with preservation large ductile deformation without failure. Tiaxial tests show that whole range of stress and temperature which are accompanying underground caverns utilization, in three-dimensional stress state exist clear boundary between compressibility and dilatancy domains. The effect from increase irreversible volumetric strain is rapid increase of creep rate with power dependence of stress and approaching a brittle failure as a result of creep. Rock salt deformation properties, defined as dilatancy boundary and creep rate, also depend on small change of temperature, with strength preservation. Paper presents laboratory procedures of triaxial tests, necessary for geomechanical effects analysis in storages surroundings. For selected example, using of research results for stress criterion determined for long-term stability of rock salt is showed up.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.