Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  podwójne paliwo
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The uncertainty in the supply of crude oil, increasing the number of vehicles and rising air pollution, especially in urban areas, has prompted us to look for alternative fuels. It is understood that using Compressed Natural Gas (CNG) in IC engines could be a mid-term solution to these problems. It is well established that CNG has better combustion characteristics and low emissions compared to conventional gasoline and diesel fuel. In the present study, an experiment was conducted to evaluate the engine performance and exhaust emissions using various percentages of CNG in dual fuel mode. CNG was mixed in the intake manifold’s air stream, and diesel was injected after the compression of the CNG air mixture. This paper presents experimental results of 40%,60%, and 80% CNG in the air stream. Engine performance and emissions are presented and discussed at a speed of 1200 rpm to 1500 rpm in steps of 50 rpm. The results of the experiments showed that adding CNG to diesel engines in dual-fuel combustion significantly impacted performance and emissions. Compared to single diesel fuel combustion, dual fuel combustion increases brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) at all CNG energy shares and engine speeds. Carbon monoxide (CO) and hydrocarbon (HC) emissions were increased, while nitrogen oxide (NOx) and smoke opacity were decreased in dual fuel combustion compared to single diesel fuel.
EN
The twenty first century could well see the rise of hydrogen as a gaseous fuel, due to it being both environment friendly and having a huge energy potential. In this paper, experiments are performed in a compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the specific composition of diesel and hydrogen for maximum brake thermal efficiency at five different loading conditions (20%, 40%, 60%, 80% and 100% of full load) individually on the basis of maximum diesel substitution rate. At the same time, the effects on brake specific fuel consumption, brake specific energy consumption, volumetric efficiency and exhaust gas temperature are also observed at various liquid gaseous fuel compositions for all the five loadings. Furthermore, second law analysis is carried out to optimize the dual fuel engine run. It is seen that a diesel engine can be run efficiently in hydrogen-diesel dual fuel mode if the diesel to hydrogen ratio is kept at 40:60.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.