Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pobieranie obrazu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper aims to develop an automatic feature extraction system for detecting icebergs in Antarctica. Extracting suitable features to discriminate an iceberg from sea ice and land melting based on its content is tedious. Especially in Synthetic Aperture Radar data, high image content is highly affected by speckle noise. Establishing the appropriate spatial relationship between pixels is not producing much accuracy with the standard low-level features. The proposed method introduces the two-level iceberg detection and tracking algorithm. The available samples were used to train the first-level convolution neural network-based features. False-positive predictions have been removed using the multiscale contourlet-based Haralick texture features in the second level. The final detected iceberg movement has been tracked using the temporal image data. The distance moved in both temporal images is computed with the help of latitude and longitude information. The proposed methodology exhibited the best performance over state-of-the-art methods and acquired 79.1% precision and 83.8 F1 score.
EN
Fast content-based image retrieval is still a challenge for computer systems. We present a novel method aimed at classifying images by fuzzy rules and local image features. The fuzzy rule base is generated in the first stage by a boosting procedure. Boosting meta-learning is used to find the most representative local features. We briefly explore the utilization of metaheuristic algorithms for the various tasks of fuzzy systems optimization. We also provide a comprehensive description of the current best-performing DISH algorithm, which represents a powerful version of the differential evolution algorithm with effective embedded mechanisms for stronger exploration and preservation of the population diversity, designed for higher dimensional and complex optimization tasks. The algorithm is used to fine-tune the fuzzy rule base. The fuzzy rules can also be used to create a database index to retrieve images similar to the query image fast. The proposed approach is tested on a state-of-the-art image dataset and compared with the bag-of-features image representation model combined with the Support Vector Machine classification. The novel method gives a better classification accuracy, and the time of the training and testing process is significantly shorter.
EN
Proposed method, called Probabilistic Features Combination (PFC), is the method of multi-dimensional data modeling, extrapolation and interpolation using the set of high-dimensional feature vectors. This method is a hybridization of numerical methods and probabilistic methods. Identification of faces or fingerprints need modeling and each model of the pattern is built by a choice of multi-dimensional probability distribution function and feature combination. PFC modeling via nodes combination and parameter γ as N-dimensional probability distribution function enables data parameterization and interpolation for feature vectors. Multidimensional data is modeled and interpolated via nodes combination and different functions as probability distribution functions for each feature treated as random variable: polynomial, sine, cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function.
PL
Autorska metoda Probabilistycznej Kombinacji Cech - Probabilistic Features Combination (PFC) jest wykorzystywana do interpolacji i modelowania wielowymiarowych danych. Węzły traktowane są jako punkty charakterystyczne N-wymiarowej informacji, która ma być odtwarzana (np. obraz). Wielowymiarowe dane są interpolowane lub rekonstruowane z wykorzystaniem funkcji rozkładu prawdopodobieństwa: potęgowych, wielomianowych, wykładniczych, logarytmicznych, trygonometrycznych, cyklometrycznych.
4
Content available remote Image retrieval based on hierarchical Gabor filters
EN
Content Based Image Retrieval (CBIR) is now a widely investigated issue that aims at allowing users of multimedia information systems to automatically retrieve images coherent with a sample image. A way to achieve this goal is the computation of image features such as the color, texture, shape, and position of objects within images, and the use of those features as query terms. We propose to use Gabor filtration properties in order to find such appropriate features. The article presents multichannel Gabor filtering and a hierarchical image representation. Then a salient (characteristic) point detection algorithm is presented so that texture parameters are computed only in a neighborhood of salient points. We use Gabor texture features as image content descriptors and efficiently emply them to retrieve images.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.