The Cowin-Mehrabadi Theorem concerning normals to the planes of symmetry of an anisotropic material is generalized to six dimensions. Commutation of the reflection matrix with the 6×6 matrix representing the elasticity tensor in the six-dimensional formulation of the elasticity tensor, provides the condition for the existence of a plane of symmetry. This condition implies the existence of at least two isochoric states for every class except the triclinic one. A simple proof is presented of the fact that an axis of symmetry An, with n > 4 must be an axis of isotropy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.