Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  plane harmonic wave
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present paper the linear theory of viscoelasticity for Kelvin–Voigt materials with double porosity is considered. Some basic properties of plane harmonic waves are established and the boundary value problems (BVPs) of steady vibrations are investigated. Indeed on the basis of this theory three longitudinal and two transverse plane harmonic waves propagate through a Kelvin–Voigt material with double porosity and these waves are attenuated. The basic properties of the singular integral operators and potentials (surface and volume) are presented. The uniqueness and existence theorems for regular (classical) solutions of the BVPs of steady vibrations are proved by using the potential method (boundary integral equations method) and the theory of singular integral equations.
EN
Electromagnetic wave scattering by a periodic array of semi-infinite thick-walled parallel plate waveguides is studied in this paper. The cases of TE and TM polarization of an incident plane harmonic wave are considered separately. The scattered field above the waveguides is sought in the form of a series of spatial harmonics in accordance with the Floquet's theorem, whereas in the waveguide regions it is sought in the form of parallel plate waveguide modes. To satisfy the boundary and edge conditions by field components in the free space above the array, the Fourier expansion for spatial harmonics amplitudes with corresponding coefficients, being properly chosen Legendre functions, is exploited. The unknown coefficients are the solutions of certain doubly infinite systems of linear equations. The approximate solution is found numerically.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.