Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  planar anisotropy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Hydromechanical deep drawing (HMDD) is a sheet hydroforming process to produce complex workpieces with high drawing ratio. Fluid pressure used during the forming process is one of the most effective parameters in this process in which increasing critical pressure causes to rupture occurrence. Since the material properties in different angles respect to the rolling direction affect the amount of critical pressure, it is important to develop an appropriate theoretical model for prediction of plastic behavior of material with high precision. In this paper, a theoretical model based on BBC2008 yield criterion including 8 and 16 parameters (8p and 16p) is developed to determine critical pressure in HMDD process. With applying uniaxial and equi-biaxial tensile tests and optimizing an error-function by using Levenberg–Marquardt method, the parameters of BBC2008 yield criterion can be determined. Low carbon St14 steel sheets are utilized for experimental samples to verify critical pressure obtained from the proposed theoretical model. BBC2008 model with 8p and 16p is compared with Barlat–Lian 1989 and experiments. The results show that BBC2008-16p yield criterion can provide a more precise model of material behavior in planar anisotropy properties, while BBC2008-8p yield criterion have a better prediction of rupture occurrence in HMDD process.
EN
On this paper the numerical analysis of the drawing process on the curved line drawing die is presented. The incremental model of the process in updated Lagrangian formulation with the regard of the geometrical and physical nonlinearity has been evaluated by variational and the finite element methods. The Frederic Barlat's model taking into consideration the anisotropy of materials in three main and six tangents directions has been used. The work out application in ANSYS/LS-DYNA program allows complex step by step analysis and prognoses: the shape, dimensions and state stress and strains of drawpiece. It is possible to calculate necessary value of the drawing force and it's changeability during the process and energy consumption. Sample results of computer simulations dependence drawing force from stamp displacement and comparison with experiment are presented. The sheet metal thickness in the characteristic drawpiece locations and drawpiece height has been calculated. A numerical calculation has been confronted with experimental results. The numerical analysis of the drawpiece spring back after takes it out of the drawing die is realized.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.