Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pitched blade impeller
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper extends knowledge about flow in an agitated batch with pitched blade multi-stage impellers. Effects of various geometrical parameters (blade number, distance between impellers) of pitched blade multi-stage impellers on pumping ability have been investigated. Axial velocity profiles were measured by LDA (Laser Doppler Anemometry). Axial pumping capacities were obtained by integration of measured axial velocity profiles in outflow from impellers. Main attention was focused on the effect of the distance between impellers in multi-stage configurations, on their pumping capacity and flow in the mixing bath in comparison with an independently operating pitched blade impeller with the same geometry. In case of a relatively close distance between Impellers H3/d= 0.5 - 0.75, the multi-stage impeller creates only one circulation loop and the impellers itself behave identically as pumps in series. However for relative higher distance of impellers than H3/d= 1.25, the multi-stage impeller creates two separated circulation loops.
EN
This paper presents a numerical analysis of an agitated fully baffled cylindrical vessel with a down pumping four blade worn or unworn pitched blade impeller (= 45[degrees] and 30[degrees]) under a turbulent flow regime. CFD simulations predict the pumping capacity of the system equipped by worn and unworn pitched blade impeller. Experimental data were taken from the authors’ previous work and compared with results of numerical computations. A good agreement with experimental data was obtained. The ensemble-average mean velocity field with worn and unworn impellers was computed. It follows from the simulation results that the wear rate of the impeller blade has a significantly negative effect on the velocity distribution in an agitated liquid. The greater the destruction of the worn blade, the higher is the deformation of the velocity field around the rotating impeller, with a simultaneous decrease in impeller pumping capacity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.