Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  piston cap
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper concerns a hypothetical Al.-alloy piston coated (capped) first by labradore and then capped by YSZ. The labradore, a member of the feldspar group is deemed thermal-shock resistant, the YSZ(PSZ) can be shock-resistant, but the outcome of the two with the Al.-alloy is not known. The analysis were made in two ways by ANSYS 10.0, as wholly isotropic materials and (second) labradore treated as wholly orthotropic one as basing on a designed texture. The above programme was fed up by the FORTRAN95-outcome of temperatures and the other B.C.’s.The temperatures between the ceramics and the alloy (except one node!!, the FORTRAN) are ( from the above two procedures), 222.63 to 270-300 graduate C, at the first groove are about 290 graduate C, and, surely lower (orthotropic). The relatively low (to ceramic) inner tensile stresses are embraced by the compressive ones from all the sides. The only problem is the-alloy bearing capacity at some sections at the ceramic boundary (and only there). But, it was the aim of the work to stick ceramics there.The dangerous stresses can occur at the pin .The ‘orthotropic ‘ results are better than the ‘iso’-ones and more true.. Taking into account that the real loading will be lower (porosity of the ceramics, the mass and the possible subtraction of stresses, i.e. those ceramic-production-confined ones) , the laboratory production of the piston appears worth.
2
Content available remote New materials and ideas to be used in adiabatic engines
EN
This note concerns several topics. Firstly, a review of some less-known topics regarding the contemporary knowledge on TBC and piston caps is given. Then, it turns out that almost unknown New Periodic System of Elements can be of assistance to predict several properties of new TBC materials. Theoretically, there exist a possibility to join Si-AL-piston alloy with yttria-stabilised zirconia (and the like) by means of feId spars (plagioclase). The latter do not attain to melting temperature and can be arrested within the alloy. A shortened integral optical equation in the manner of inverse problem was used to compute the temperature drop accros the piston cap's layers. The YSZ layer operating in this hypothetical engine gave 517.5 graduate K drop, whereas the feldspar gave about 100-50graduate K temperature drop per mm. This arrangement would give minimised radiation and more or less 'cold' engine(piston). Perhaps, oxides of the thalium-sesquioxide-type structure would be better to stick to metal than the commonly used ones.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.