This paper is focused on the open loop control of a piezoelectric tube actuator, hindered by a strong hysteresis. The actuator was distinguished with 22 % hysteresis, which hinders the positioning of piezoelectric actuator. One of the possible ways to solve this problem is application of an accurate analytical inversed model of the hysteresis in the control loop. In this paper generalized Prandtl-Ishlinskii model was used for both modeling and open loop control of the piezoelectric actuator. Achieved modeling error does not exceed max. 2.34 % of the whole range of tube deflection. Finally, the inverse hysteresis model was applied to the control line of the tube. For the same input signal (damped sine 0.2 Hz) as for the model estimation the positioning error was max. 4.6 % of the tube deflection. Additionally, for a verification reason three different complex harmonic functions were applied. For the verification functions, still a good positioning was obtained with positioning error of max. 4.56 %, 6.75 % and 5.6% of the tube deflection.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW