Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pierścienie aromatyczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Synteza γ-laktonów z podstawnikami aromatycznymi
EN
Biological activities of lactones are predominantly determined by different substituents on a lactone ring. γ-Lactones with aromatic substituents have interesting biological activities and serve as useful intermediates in the synthesis of many natural and synthetic products. Pulvinic and vulpinic acids exhibit antimicrobial, antioxidant and anticancer activity [1–3]. Paraconic acids have anticancer and antibacterial activity [4, 5]. The interesting biological activities i.a. antileukemic, anti- HIV and cytostatic, have been found for dibenzyl-γ-lactones [8]. This review covers some examples of synthetic and biotechnological methods leading to either racemic or optically active γ-lactones with aromatic substituents. The racemic α-benzylidene lactones can be produced from Baylis-Hillman acetates [9]. The multicomponent synthesis of the paraconic acid analogs is performed by a fourfold metallation-conjugate addition-aldol addition-intramolecular transesterification sequence [4]. Suzuki-Miyaura reaction is the key step in the synthesis of asymmetric pulvinic acids [1]. Some other examples of synthetic strategies involving the reactivity of ylides, vicinal dianions, ozonolysis or Claisen rearrangement are also presented [10–13]. Production of optically active γ-lactones with aromatic substituents involves application of biotechnological and chemical methods. The first one includes using commercially available enzymes [16, 17] or whole cells of microorganisms [18–20]. Chemical methods involve application of chiral starting materials like malic acid esters or the derivatives of succinic acid [14, 15] or chiral catalysts like BINAP-Rh or Ru complexes [7].
EN
Nucleophiles add to electron-deficient arenes, also those containing halogens, initially in positions occupied by hydrogen to form óH adducts. This addition is faster than addition in similarly activated positions occupied by halogens. Formation of the óH adducts is a reversible process, thus they dissociate and slower addition in positions occupied by halogens results in formation of óH adducts followed by fast departure of X– to form products of nucleophilic substitution of halogen, SNAr. In the review it is shown that there are a few ways for fast further conversion of initially formed óH adducts into products of nucleopilic substitution of hydrogen such as oxidative substitution, vicarious substitution, etc. Since formation of óH adducts is faster than óH adducts and the former undergo fast transformations into products of nucleophilic substitution of hydrogen we should accept than this is the major, primary reaction whereas conventional nucleophilic substitution of halogens, SNAr reaction “ipso” substitution is just a secondary process. In modern textbooks only SNAr reactions are discussed whereas nucleophilic substitution of hydrogen is not mentioned, thus it is necessary to introduce proper corrections in textbooks and teaching of this chapter of chemistry of arenes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.