Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  piana metaliczna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
When a truck impacts on a reinforced concrete (RC) column such as a bridge pier at a high velocity, a large reaction force would generate which would damage the truck, hurt the passengers and destroy the column. Lightweight foams with excellent energy absorbing performance are often used as safeguard constructions to resist impact. The impact behavior can be divided into soft and hard impact. In the case of soft impact, the impacted structure deformation is predominant. In the paper, metallic foam safeguarded RC square columns impacted by a rigid block are simulated using the ABAQUS code software, and the influential characteristic of foam density on the peak impact force and ultimate energy absorption is focused on. The simulated results indicate that the foam safeguard constructions play remarkable role on impact resistance. It is exciting that there appears almost an identical critical foam density corresponding to the minimum peak force and the ultimate energy absorption, which is of great significance for engineering design of this type of safeguard constructions to resist impact.
2
Content available remote Design of micro porous Al foams by high energy milling
EN
To explore a new route to produce metallic foams which results in a structure of closed micro porous. High energy milling is employed to incorporate particles of foaming agents in metallic powders to promote homogeneous distribution of micro gas bubbles during foaming. Design/methodology/approach: AA2014 powders were mixed with TiH2 particles as gas releasing agent, through high energy milling, producing composite powders. Powders were compacted and obtained compacted precursors were heated to promote foaming of the metal. Effect of processing conditions in the expansion of the metal, structural characteristics, density and mechanical properties under compression, of obtained foams was analyzed. Findings: Foaming composite powders of AA2014/TiH2 produced by high energy milling is a promising route to produce micro porous aluminium foams. The best foaming condition among the conditions investigated, occurs for the highest milling time (17 h) and highest heating rate (3°C/s) imposed during foaming, resulting in 140% of maximum expansion and foams with relative density of 0.44. Research limitations/implications: Main limitation of the proposed process is the long time required to produce composite powders by high energy milling, which can justify the process for specific purposes where micro porous are required. However, as all new development, further works can lead to the optimization of processing parameters, mainly concerning reduction of processing time, to make the process compatible to wider industrial applications. Practical implications: New products can be developed for specific applications requiring porous with micro scale. Originality/value: The use of the foaming agent structurally incorporated in the metal powder to produce precursors for foaming is original.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.