Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  photonic birefringent
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Jednym z kierunków rozwoju technologii światłowodów jest opracowanie lepszych niż dotychczas konstrukcji światłowodów domieszkowanych pierwiastkami ziem rzadkich do laserów włóknowych średniej i dużej mocy. Innym kierunkiem badań technologicznych jest opracowanie włókien aktywnych do laserów i wzmacniaczy małych mocy dla telekomunikacji i innych zastosowań na przykład w metrologii. Zwykłe aktywne światłowody fotoniczne domieszkowane erbem wykazują małą dwójłomność, a raczej niezbyt dużą dwójłomność charakterystyczną dla zwykłych, nieaktywnych światłowodów fotonicznych. To powoduje problemy z niestabilnością stopnia polaryzacji generowanego światła. Alternatywą są światłowody o wysokiej dwójłomności, których zbadanie w układach wzmacniaczy i laserów powinno ułatwić rozwiązanie problemów z polaryzacyjną stabilnością pracy tych urządzeń. Światłowody fotoniczne wykazywać mogą znacznie większą dwójłomność niż klasyczne przy znacznie mniejszych naprężeniach wewnętrznych powodujących niestabilność termiczną laserów. W pracy zaprezentowano technologie wytwarzania dwóch rodzajów fotonicznych światłowodów aktywnych ze szkła kwarcowego domieszkowanych pierwiastkami ziem rzadkich oraz ich podstawowe charakterystyki (tłumienności spektralne, parametry strukturalne, dwójłomności). Aktywne rdzenie światłowodów wytworzono metodą MCVD zmodyfikowaną o impregnację z fazy ciekłej. Średni współczynnik załamania rdzeni włókien jest taki sam jak niedomieszkowanego szkła kwarcowego. Ten efekt osiągnięto dzięki domieszkowaniu szkła erbem, glinem, germanem i fluorem. Domieszkowanie germanem zastosowano w celu uczulenia rdzeni włókien na zapis siatek Bragga, które są ważnymi elementami laserów. Znaną metodą składania wytworzono preformy i wyciągnięto z nich światłowody zabezpieczone typowymi dla włókien telekomunikacyjnych powłokami ochronnymi.
EN
One of the directions of the development of technology optical fibers is creation of better constructions of optical fibers doped with rare earth elements for large and medium power fiber lasers. Another direction of research in technology is the elaboration of active fibers for low power fiber lasers and amplifiers for telecommunication and different applications, for example in the metrology. Standard Er doped active photonic optical fibers show small birefringence rather than very large birefringence characteristic for normal non active photonic optical fibers. This results in problems with the stability of level of the polarization of generated light. The alternative is optical fibers with high birefringence, which tested in amplifiers and lasers setup should help to solve problems with polarization stability work of these devices. Photonic optical fibers can exhibit much larger birefringence than classical fibers with much smaller internal stress that cause the thermal instability of lasers. In this work the technology of photonic high silica active optical fibers doped with rare earth elements production and their basic characteristics (spectral attenuation, structural parameters, birefringent) were presented. The active cores of optical fibers were produced with MCVD method modified by the impregnation from liquid phase. The average refractive index of fibers' cores is the same as in pure quartz glass. This effect was achieved because this glass was doped with erbium, aluminum, germanium and fluoride. Germanium doping was used to enable writing of Bragg gratings, which are important elements of lasers. Preforms and fibers protected by typical for telecommunication fibers coatings were produced with the well-known stack and draw method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.