Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  photodynamic diagnosis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
5-aminolevulinic acid (5-ALA) is used as a drug in the photodynamic therapy (PDT) and photodynamic diagnosis (PDD) of cancer. Combined with irradiation at the appropriate wavelength, it is used as a photosensitizer precursor to identify/kill tumour cells. In cells, 5-aminolevulinic acid is converted to protoporphyrin IX (PpIX), which is the precursor of hemin. Internal application of 5-ALA induces the overproduction of the endogenous photosensitizer, PpIX, which can subsequently be activated by light at the appropriate wavelength. 5-ALA can be applied internally to trans-mutated areas or be injected directly into them. Chemical derivatives of 5ALA have the potential to improve bioavailability, enhance stability and lead to better therapeutic outcomes for treated patients. 5-ALA is currently the most commonly used drug in the photodynamic therapy and diagnosis (PDT/PDD) of cancers.
PL
Kwas 5-aminolewulinowy (5-ALA) jest stosowany jako lek w terapii fotodynamicznej (PDT) i diagnostyce fotodynamicznej (PDD) raka. Wraz z promieniowaniem o odpowiedniej długości fali jest używany jako prekursor fotouczulacza w celu identyfikacji lub/i zabicia komórek nowotworowych. W komórkach 5-ALA przekształca się w protoporfirynę IX (PpIX), która jest prekursorem heminy. Miejscowe zastosowanie 5-ALA indukuje nadprodukcję endogennego fotouczulacza PpIX, który może być następnie aktywowany światłem o odpowiedniej długości fali. 5-ALA można podawać zewnętrznie na leczone zmiany lub wstrzykiwać bezpośrednio do nich. Pochodne 5-ALA mogą poprawić biodostępność, zwiększyć stabilność i prowadzić do lepszych wyników terapeutycznych leczonych pacjentów. 5-ALA jest obecnie najczęściej stosowanym preparatem w fotodynamicznej terapii i diagnostyce (PDT/PDD) nowotworów.
PL
W pracy badano wnikanie światłouczulacza fotolonu do komórek He-La. Przeprowadzono badania spektroskopowe fotolonu w obecności i bez formaldehydu, stosowanego do utrwalania komórek. Badania mikroskopowe przeprowadzono za pomocą mikroskopu konfokalnego. Komórki inkubowano ze światłouczulaczem przez 4 i 12 godzin. Natężenie fluorescencji fotolonu w komórkach zależy od stężenia roztworu i czasu inkubacji. W wyniku przeprowadzonych pomiarów mikroskopowych wykazano, że czas inkubacji niezbędny do zaobserwowania związku wewnątrz komórek wynosi co najmniej 4 godziny, a minimalne stężenie światłouczulacza 1 mg/ml (1,67 × 10-6 M).
EN
The entrapment of the photosensitizer Photolon into the He-La cells, was studied. The fluorescence of photosensitizer was examined without and in the presence of formaldehyde. The study was performed by means of confocal microscopy of cells incubated for 4 hours and 12 hours. It was stated that 4 hours is the shortest time of incubation allowing the observation of Photolon in the He-La cells and the minimal concentration of photosensitizer is 1mg/ml (1,67 × 10-6 M).
PL
Artykuł opisuje metodę podpowierzchniowego mapowania fotonów użytą do symulowania procesu transportu światła w tkance ludzkiej jelita grubego. Najpierw przedstawiono model teoretyczny tkanki uwzględniając wartości liczbowe opisujące jej właściwości optyczne jak i fluorescencyjne. Następnie wykorzystując algorytm Monte-Carlo wygenerowano obrazy, które dla różnych konfiguracji źródła światła, umożliwiają na szybsze zlokalizowanie zmian nowotworowych. Otrzymane wyniki pomogą w takim nastawieniu aparatury pomiarowej, aby proces diagnozy fotodynamicznej był łatwiejszy i skuteczniejszy.
EN
This paper describes the method of subsurface scattering to simulate the process of light transport in human colon tissue. First the theoretical model was introduced including parameters characterizing its optical and fluorescent properties. Then using Monte-Carlo algorithm images were generated, which for different light source configurations, enables quicker localization of cancerous structures. Obtained results will help adjusting real medical devices, so that the photodynamic diagnosis is easier and more efficient.
PL
W pracy przedstawiono podstawy teoretyczne klasyfikatora maszyny wektorów podpierających oraz uzyskane przy jego zastosowaniu wyniki klasyfikacji obrazów wielospektralnych pozyskanych z 21 kanałowego systemu wielospektralnego obrazowania endoskopowego. Uzyskana rozróżnialność obszarów zmienionych chorobowo jest w ocenie lekarzy diagnostów wyższa niż w przypadku systemu Xillix Onco LIFE.
EN
The paper presents the theoretical basis and results obtained with use of the support vector machine classifier on multispectral image classification gained with 21-channel system for endoscopic multispectral imaging. Obtained distinguishability of pathological changes areas is higher than in the case of Xillix Onco LIFE system in the medical diagnosticians opinion.
EN
This paper presents the method of light propagation in human tissue. Subsurface scattering model together with photon mapping is applied to generate images. Surface and volumetric photon maps were used to fully describe the fluorescence phenomenon. The qualitative comparison between images will be presented to find the best camera angle of incidence. Moreover, multi-spectral images rendered during simulations are verified with real, scientific images.
PL
Artykuł przedstawia zastosowanie metody propagacji światła w stosunku do tkanek ludzkich. Model podpowierzchniowego rozpraszania razem z algorytmem mapowania fotonów zostały użyte do generowania obrazów. Aby w pełni symulować zjawisko fluorescencji, wykorzystano powierzchniowe i wolumetryczne mapy fotonów. Została przeprowadzona analiza jakościowa otrzymanych obrazów, w zależności od kąta nachylenia endoskopu. Ponadto, multispektralne obrazy wygenerowane w czasie eksperymentów, zweryfikowano z rzeczywistymi zdjęciami.
EN
This paper describes the method of light transport in human colon tissue. The structure is treated as a turbid medium, so that subsurface scattering model can be applied. Extended photon mapping algorithm is utilized to add a contribution of fluorescence phenomenon and finally generate images. The quantitative dependencies between photon's angle of incidence and their distribution in the tissue are going to be shown. This investigation can be later used to find the best position of endoscope during cancer seeking and recognition.
PL
Artykuł opisuje metodę transportu światła w tkance ludzkiej jelita grubego. Tkanka jest traktowana jako struktura pylasta, dlatego można było zastosować dla niej model podpowierzchniowego rozpraszania. Użyto rozszerzonego o zjawisko fluorescencji algorytmu mapowania fotonów, aby wygenerować obrazy. Pokazano ilościowo wpływ kąta padania fotonów światła na ich rozkład w tkance. Badania te będą mogły zostać użyte w celu znalezienia najlepszego ułożenia głowicy endoskopu i szybszego wykrycia raka.
PL
Wykorzystywanie światła wraz z substancją foto-uczulającą w terapii medycznej jest znane od dawna, a obecnie rozwijana jest również diagnostyka fotodynamiczna (PDD). Diagnostyka fotodynamiczna jest metodą nieinwazyjną stosowaną w diagnozowaniu wielu rodzajów nowotworów, takich jak: rak podstawnokomórkowy, rak kolczystokomórkowy, rak płuc, nowotwory złośliwe mózgu [1-2]. Podstawą w diagnozowaniu tkanek patologicznie zmienionych przy zastosowaniu PDD jest dobranie odpowiedniego fotouczulacza. Właściwości foto-uczulające, czyli cytotoksyczne zależą przede wszystkim od struktury chemicznej fotouczulacza, jego właściwości fizycznych i chemicznych, zdolności wnikania i akumulacji w tkance wykazującej zmiany patologiczne [1-6]. Praca niniejsza stanowi przegląd literaturowy dotyczący właściwości fizykochemicznych oraz oddziaływań biofizycznych fotosensybilizatorów z tkanką w procesie diagnostycznym. Najczęściej stosowanymi fotouczulaczami w diagnostyce medycznej są pochodne porfiryny (RYS. 1) [5]. Wyróżniamy trzy klasy fotouczulaczy: hydrofobowe, hydrofilowe i amfifilowe.[7]. W pracy niniejszej przedstawione będą właściwości i oddziaływania biofizyczne pochodnych szeregu chlorinu (chlorinu e6 [8], (RYS. 2)). Omówione będą oddziaływania i właściwości fotouczulaczy z grupy ftalocyjaniny (Pc), naftocyjaniny (Npc) oraz ich metaliczne pochodne Zn,Al,Ga,Si,Sn (RYS. 3) [9]. Szczególną uwagę zwrócono na właściwości kwasu 5-aminolewulinowy (ALA), który jest pięciowęglowym aminokwasem (RYS. 4) [5,10,11]. Podczas diagnostyki fotodynamicznej fotuczulacz naświetlany promieniowaniem laserowym o odpowiednio dobranej długości fali przechodząc na niższe poziomy energetyczne oddaje energię strukturom tkanek, co prowadzi do generowania wolnych rodników oraz wzbudzenia molekuł tlenu z paramagnetycznego stanu podstawowego do singletowego stanu diamagnetycznego. Wolne rodniki oraz tlen singletowy mogą powodować efekty toksyczne w tkankach. Efekty te zależą od ilości i rodzajów wytwarzanych wolnych rodników oraz od koncentracji tlenu singletowego, a więc od rodzaju stosowanego fotouczulacza i warunków procesów fotodynamicznych.
EN
Application of light and photosensitzers molecules in medicinal therapy and diagnosis (PDD) is known. Photodynamic diagnosis is used for a lot of tumors, for example: basal cell carcinoma, squamous cell carcinoma, pulmonary carcinoma, malignant neoplasm of the brain. The main problem of PDD is to chose of the optimal photosensitizer. Effective photodynamic processes depend on chemical structure, and chemical and physical properties of photosensitizers [1-10]. This work is the review of physicochemical properties and biophysical interactions of photosensitizers with tissues during photodynamic diagnosis. Derivatives of porphyrins (FIG. 1) [5], chlorine e6 (FIG. 2) [8], metalophthalocyanines compounds (FIG. 3) [9], and 5-aminolevulinic acid [11], were discussed. During photodynamic diagnostic processes the excited photosensitizer irradiated by laser causes excitation of oxygen molecules from paramagnetic ground state to diamagnetic singlet state. These effects are accompanied by formation of free radicals and reactive singlet oxygen, which damages cells structures. Free radicals and singlet oxygen may be responsible for toxic effects in tissues during PDD. These interactions depend on amount and types of free radicals and depend on concentration of singlet oxygen, so we can say that type of applied fotosensitizer and photodynamic conditions determine negative reactions during photodynamic diagnosis.
PL
Przedstawiono dwie optyczne metody diagnostyki nowotworowej: diagnostykę fotodynamiczną i biopsję optyczną. Diagnostyka fotodynamiczna oraz biopsja optyczna są alternatywą dla metod inwazyjnych rozpoznawania i leczenia nowotworów. Obie te metody wykorzystują światło z zakresu fal niebieskich. Zaletami ich są: nieinwazyjność, dobra tolerancja przez pacjentów, niemal natychmiastowe wyniki badania i minimalne efekty uboczne u pacjentów.
EN
We present two optical methods for diagnostic neoplasm: pthotodynamic diagnosis and optical biopsy. The photodynamic diagnosis is the alternative method of diagnosis of neoplastic diseases. Both methods bases on the interaction blue light with agents present in target tissue. The advantage of this new methods is: minimal invasive, very good tolerance for patients, immediate findings and minimal side effects.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.