Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  photocatalytic reactor
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A slurry UVA-LED concentric glass tube reactor (CGTR) with micro-depthof 2 mm was designed for plug flow behaviour (length/effective diameter = 150). The reactor design considered uniform radial concentration and hydrodynamic cavitation. The 100% Acridine Orange dye (3.77×10-5 M) was removed within 35 min at the graphene oxide dose of 0.3 g/dm3 and initial pH 11. It was observed that hydrodynamic cavitation shortened the reaction time and enhanced the apparent reaction rate constant from 0.022 to 0.109 min-1. Further, the degradation pathway showed that decolourized dye solution consisted of ethylenedione (34%), indicating the oxidative reaction occurred.
EN
The challenges of photocatalytic reactor design are addressed in the present study, focusing on developing novel reactor configurations for uniform light intensity, high photon, and mass transfer efficiencies. This work developed a scalable compact UV-LED strip photocatalytic reactor comprising of a quartz tube placed inside the aluminum shell. The light source, i.e., 300 LEDs (lambda max = 365 nm) circumferentially disposed in the inner walls of shell and reactor's performance was evaluated for 3.12 x10-5 mol/dm3 methylene blue for 80% dye removal in 60 min for optimized conditions. Hydrodynamic cavities were induced by the constricted geometry and inlet pressure, which may increase the dye removal. Actinometry was performed and photonic efficiency was evaluated to be 25%, which proves that the present reactor is an efficient configuration allowing maximum dye degradation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.