Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  photoactive coating
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Intravascular stenting of atherosclerotic coronary arteries is a life-saving, widely used procedure in interventional cardiology. Adverse clinical outcomes such as restenosis high-light the importance of meeting the excellent biocompatibility by cardiovascular implants. Many attempts have been made to improve the safety profile of implant surface. We for the first time developed the photoactive intravascular titania-based nanomaterials for the application as cardiovascular stent coating. Photoactive biomaterial deposited on the cardiovascular stent surface demonstrated promising features, making it an excellent substrate for endothelial cells growth and proliferation. The biocompatibility of these coatings has been compared with 316L stainless steel surfaces typically used in commercial coronary stents production. The results of the study proved that the innovative titania- based coatings have better biocompatibility characteristics than the 316L stainless steel and in regard of its antithrombotic potential provided protection against restenosis. Further-more, the titania coating supported endothelial cells attachment and proliferation, and induced prolonged plasma recalcification time in comparison with stainless steel surface. Innovative photoactive titania coating can be an important factor to prevent the process of the restenosis in the place of implantation.
EN
The aim of the presented work was the removal of organic dye, Acid Red 18, from water using a novel reactor with the photoactive refill. Titanium dioxide was immobilized on the base material as a thin layer from the alcoholic suspension followed by thermal stabilization. The prepared coating exhibits high stability in repeated cycles of water treatment. The complete removal of colour was achieved in a relatively short time of 14 hours. The proposed reactor with the photoactive refill solves the problem of the necessity of the replacement of the reactor or parts of the reactor when the photocatalysts activity decreases. In the case of activity drop of the photocatalyst, only the photoactivve refill can be easily replaced.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.