Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  photoacoustic tomography
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A numerical study and simulation of breast imaging in the early detection of tumors using the photoacoustic (PA) phenomenon are presented. There have been various reports on the simulation of the PA phenomenon in the breast, which are not in the real dimensions of the tissue. Furthermore, the different layers of the breast have not been considered. Therefore, it has not been possible to rely on the values and characteristics of the resulting data and to compare it with the actual state. Here, the real dimensions of the breast at three-dimensional and different constituent layers have been considered. After reviewing simulation methods and software for different stages of the PA phenomenon, a single suitable platform, which is commercially available finite element software (COMSOL), has been selected for simulating. The optical, thermal, elastic, and acoustic characteristics of different layers of breast and tumor at radiated laser wavelength (800 nm) were accurately calculated or obtained from a reliable source. Finally, by defining an array of 32 ultrasonic sensors on the breast cup at the defined arcs of the 2D slices, the PA waves can be collected and transmitted to MATLAB software to reconstruct the images. We can study the resulting PA wave and its changes in more detail using our scenarios.
EN
A finite-difference time-domain numerical solution is presented for solving a single second-order photoacoustic equation, instead of solving three coupled first-order equations. In this way, we are able to insert the heating function to the simulation directly instead of initial pressure. Results are validated using k-Wave simulation and show a good agreement for future development. The perfectly matched layer boundary condition has been implemented for a second-order photoacoustic equation and results are compared to Dirichlet, Neumann and Mur boundary conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.