This paper concerns an analytical study of an infinite expanse of uniform flow of steady axisymmetric creeping flow of an incompressible micropolar fluid around the permeable sphere assuming a nonhomogeneous boundary condition for microrotation vector. It is assumed that microrotation vector is proportional to the rotation rate of velocity vector. The stream function solutions for the flow fields are obtained in the terms of modified Bessel’s functions and Gegenbauer functions. Continuity of normal velocity, no-slip condition, non-zero microrotation vector on the sphere, uniform velocity at infinity are the different boundary conditions used to determine the flow fields explicitly. The microrotation component, pressure field, bounds of permeability parameter and drag force experienced by the permeable sphere are calculated. Dependence of the drag force on different fluid parameters is presented graphically and discussed. It is found that drag force decreases with increasing spin parameter. Several cases of interest are deduced from the present analysis.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.